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Senior league
5. Each of 2025 persons arranged in a circle is either a knight, who

always tells the truth, or a liar, who always lies. Each of these 2025 persons
said: There are exactly three knights among my two left neighbours, my two
right neighbours and me. What is the maximum possible number of knights
among these persons?

(A. Golovanov)

6. In a sequence (xn), the number x1 is positive and rational, and

xn+1 =
{nxn}

n
for n ⩾ 1

({a} denotes the fractional part of a). Prove that this sequence contains
only finitely many non-zero terms and their sum is an integer.

(V. Kolezhuk, O, Tarakanov)

7. Each vertex of a convex quadrilateral ABCD is reflected across the
two sides not containing it (vertex A is reflected across BC and across
CD, and so on). Prove that some 4 of 8 points thus obtained are vertices
of a cyclic or circumscribed quadrilateral.

(A. Kuznetsov)

8. A Latin square (resp. cube) of order n is an n×n array (resp. n×n×n

array) filled with different numbers a1, a2, . . . , an occurring exactly once
in each row parallel to any of its sides. Positive integers h1, h2, . . . , hk

are such that n = h1 + . . . + hk. Each of the sides of a Latin square of
order n is divided into parts of length h1, . . . , hk so that the square is cut
into rectangular parts as shown in the figure. It is known that for all i the
square parts hi×hi covering the diagonal are Latin squares of order hi and
the sets of numbers in them are disjoint.

Prove that then there exists a Latin cube of order n with similar prop-
erty: its sides can be divided into parts of length h1, . . . , hk so that the
cubes hi × hi × hi covering its diagonal are Latin cubes with disjoint sets
of numbers.

(D. Donovan, T. Kemp, J. Lefevre)

h1

h2

h3

. . .
hk−1

hk

h1 h2h3 . . .hk−1hk
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Junior League

5. All positive real numbers are coloured with three colours (there is
at least one number of each colour). Prove that there exist three numbers
of three different colours so that each of them is less than the sum of the
other two.

(A. Golovanov)

6. In a sequence (xn), the first number x1 is positive, and

xn+1 =
{nxn}

n
for n ⩾ 1

({a} denotes the fractional part of a). Prove that the sequence does not
contain zeroes if and only if x1 is irrational.

(V. Kolezhuk, O, Tarakanov)

7. There are 128 persons in each of two rooms. In one move, we can
select several (disjoint) pairs of persons so that the persons in each pair are
in different rooms now, and exchange persons in each pair. What minimum
number of moves is needed so that every two people found themselves in
different rooms at least once?

(I. Benjamini, I. Shinkar, G. Tsur)

8. All sides of a triangle ABC are pairwise different. Its angle bisectors
AA1, BB1, CC1 meet at point I. The incircle of the triangle ABC is
tangent to the side BC at A2. The circle ωa contains A1, A2, and the
midpoint of AI. The circles ωb and ωc are defined similarly. Prove that
the centres of ωa, ωb, ωc are collinear.

(I. Frolov)
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SOLUTIONS

Senior League

5. The answer is 1350.
The example is given by periodic arrangement: two knights, liar, two

knights, liar, etc. It is easy to see that this arrangement contains 2
3 ·2025 =

1350 knights, and the statements of knights and liars correspond to their
nature.

Bound. Suppose that the number of knights is r. Let us find the number
of knights among every five consecutive persons and add all these numbers.
We obtain 5r, since every knight is counted 5 times. On the other hand,
there are three knights in the five centered at a knight, and at most four
in the five centered at a liar. Therefore the sum does not exceed

5r ⩽ 3r + 4(2025− r).

Thence r ⩽ 2
3 · 2025.

6. The hard truth about the sequence (xn) is, this sequence being the
protocol of a slow and sad decomposition of a rational number x1 = a

b to
the form a

b = s+ 1
k1
+ . . .+ 1

km
, where s = [x1], k1 > . . . > km are positive

integers, and xn = 1
ki
+ . . .+ 1

km
for ki−1 < n ⩽ ki.

Indeed, x2 = {x1} by the definition. Consider the moment when a new
term xn < 1 (not equal to xn−1 or simply the first if [x1] = 0) appears in
the sequence. Let xn = a

b , where a and b are coprime positive integers.
Consider the smallest k such that xn ⩾ 1

k . Since xn < 1
n−1 if n > 1, we

have k ⩾ n. Then obviously

all xi = xn if n ⩽ i ⩽ k. (1)

Since xn < 1
k−1 , we have (k − 1)a < b ⩽ ka < 2b and

xk+1 =
{ka

b }
k

=
ka− b

kb
= xn −

1

k
. (2)

Note that the numerator of xk+1 in its irreducible form is not greater than
ka−b < a, that is, less than the numerator of xn. As the numerator cannot
decrease infinitely, at some moment the next term will be 0.
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Let km be the index of the last non-zero term in the sequence. Then the
term itself is 1

km
. If km−1 is the largest index of a non-zero term different

from xkm, it follows from (2) that this term is 1
km−1

+ 1
km

. Restoring the
sequence backwards in this way, we arrive at the desired formula.

Now we may re-write the desired sum using (1):

x1 + x2 + . . .+ xkm = s+ k1 ·
1

k1
+ k2 ·

1

k2
+ . . .+ km · 1

km
= s+m,

and this is obviously an integer.

7. If ABCD is a trapezoid (or a rectangle), the claim is obvious because
of axial symmetry. Let the lines BC and AD intersect at P . We consider
the points A1 and D1 be symmetric to A and D with respect to the line BC.
It follows from symmetry that P , A1, D1 are collinear and PA1 · PD1 =
PA · PB.

Now let B1 and C1 are symmetric to B and C with respect to the line
AD. It follows from symmetry that P , B1, C1 are collinear and PB1·PC1 =
PB · PC.

Thus PA1 · PD1 = PA · PB = PB · PC = PB1 · PC1 and therefore
A1, B1, C1, D1 are concyclic (as desired) or collinear.

Note that ∠D1PC1 = 3∠BPA because of symmetry. Therefore in the
case when A1, B1, C1, D1 are collinear, ∠BPA must equal 60◦. Applying
similar arguments to the common point Q of the lines AB and CD, we see
that in the only remaining case we also have ∠AQD = 60◦. In this case
the quadrilateral ABCD is symmetric with respect to one of its diagonals,
say, BD. Then the points symmetric to C with respect to AB and AD,
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and the points symmetric to A with respect to BC and CD, are vertices
of isosceles trapezoid, a cyclic quadrilateral.

8. Without changing the substance of the problem, we may replace a1,
a2, . . . , an by the numbers 1, 2, . . . , n so that the numbers filling each
hi × hi diagonal square are the coordinates of its rows and columns.

Let L(r, c) denote the number on the intersection of the r-th row and
the c-th column in the original Latin square. We will also denote by Si set
of numbers filling the hi × hi square on the diagonal.

We present a Latin cube as a pile of Latin squares lying in horizontal
layers one above the other. In this way, a unit “cell” of a Latin cube is
defined by three coordinates (r, c, ℓ), where ℓ is the number of the layer,
and r, c are the numbers of the row and the column in the layer. The
desired cube C may be defined by the following rule. Let the unit cube
with coordinates (r, c, ℓ) contain the number

C(r, c, ℓ) = L(L(r, ℓ), c).

First we check that this rule defines a Latin cube. Indeed, let c and ℓ
be fixed, and r runs from 1 to n. Then L(r, ℓ) also runs through the values
1, 2, . . . , n in order of their appearance in the ℓ-th column of the original
Latin square L. Then the second iteration L(L(r, ℓ), c) runs through the
numbers written in the c-th column ot the square L. In other words, we
proved that in each row of unit cubes parallel to the first coordinate axis all
numbers are different. It is similarly proved for the rows parallel to other
axes.

It is obvious now that every cell in a unit cube (r, c, ℓ) belonging to
the hi × hi × hi diagonal cube contains a number from Si. Indeed, if the
coordinates r, c, ℓ belong to Si, then L(r, ℓ) = a ∈ Si and L(a, c) ∈ Si

because of our initial convention. Therefore C(r, c, l) = L(L(r, l), c) ∈ Si.

Junior League

5. Suppose the contrary: no three numbers of different colours satisfy
the conditions, that is, for every numbers x and y of different colours there
are no numbers of the third colour between y and x+ y.

Take three numbers a < b < c and call their of the first, the second
and the third colour respectively. We will prove by induction on k that
there are no numbers of the third colour between b and ak

2 + b for each
positive integer k. For k = 2 this is our assumption. If this is true for
some k, the number y = a(k−1)

2 + b has the first or the second colour. One
of the numbers a and b has other colour, and thus there are no numbers of
the third colour between y and y + a = a(k−1)

2 + b or even between y and
y + b > y + a.
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On the other hand, c < ak
2 + b for some k, a contradiction.

6. If xn is irrational, so is xn+1 = {nxn}
n , therefore for irrational x1 all

terms of the sequence are irrational. If x1 is rational, all numbers xn are
rational. In that case we will present each xn as an irreducible fraction
with positive integral denominator. Let us prove that for each term xn,
n > 1, with non-zero numerator there is a term with a smaller numerator.

Let xn = a
b , where a and b are coprime positive integers. Consider the

smallest k such that xn ⩾ 1
k . Since xn < 1

n−1 if n > 1, we have k ⩾ n.
All xi with n ⩽ i ⩽ k equal xn. Since xn < 1

k−1 , we have (k − 1)a <
b ⩽ ka < 2b and

xk+1 =
{ka

b }
k

=
ka− b

kb
.

Since ka− b < a, the numerator of xk+1 is less than the numerator of xn.
The numerator cannot decrease infinitely, therefore 0 will appear in the

sequence.

7. The answer is 7.
Bound. We use letters A and B to denote the two rooms. Suppose

we attained our goal in t moves. We can give each person a paper with a
string of t + 1 letters A and B, the first letter denoting the room where
she originally was, and the remaining t letters her locations after each of t
moves. If two persons sat in different rooms at least once, their strings are
different. This means that the number of different strings 2t+1 is at least
256 = 28, the number of persons. Hence t ⩾ 7.

Example. Here is an algorithm requiring 7 moves. We give to the people
all possible strings of 8 letters A и B, reserving those beginning with A to
the people that were in the first room initially. In the first move the people
in A with second letter B in their strings (exactly one half of all people in
the room) change places with the people in B with second letter A (also
one half of the room). Similarly, in i-th move each person goes to the room
denoted by the (i + 1)-th letter of her string. In this way the owners of
every two different strings will find themselves in different rooms at least
once.

8. Let Ω be the circumcircle of ABC. We will prove that the centres of
ωa, ωb, ωc belong to the line OI, where O is the centre of Ω. Let the line
BB1 and CC1 meet Ω again at N and L, respectively.

It follows from the Incentre-excentre Lemma that AL = LI, AN = NI,
therefore the line LN is the perpendicular bisector of AI. Let S be the
midpoint of AI, and R the meeting point of LN and IA2. Then S lies on
the line LN and ∠RSA1 = ∠NSI = 90◦ = ∠IA2C = ∠RA2A1. Thus
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the point R lies on the circle ωa. Then the triangles SIR and A2IA1 are
similar.

Since the quadrilateral BLNC is cyclic, the triangles LIN and BIC
are also similar. The segments SI and IA2 are altitudes in these triangles.
Therefore S and A2 are corresponding points in these triangles. From the
similarity of the triangles SIR and A2IA1 it follows, however, that R and
A1 are also corresponding elements in LIN и BIC. Let X be the midpoint
of SR and Y the midpoint of A2A1. Then X and Y are also corresponding
under the similarity of LIN and BIC.

Let T be the perpendicular bisector of LN and M the perpendicular
bisector of BC. Then T and N are (again!) corresponding points under
the similarity of LIN and BIC. Since the ratio of corresponding segments
in similar triangles is constant,

SX

XT
=

A2Y

YM
. (3)

The perpendiculars to ST at S, X, and T intersect the line IO at I, O1,
and O respectively. Thales’s intercept theorem gives

SX

XT
=

IO1

O1O
. (4)

The perpendiculars to A2M at A2, Y , and M intersect the line IO at I,
O2, and O respectively. Thales’s intercept theorem gives

A2Y

YM
=

IO2

O2O
. (5)
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Combining the results (3), (4), and (5), we obtain

IO1

O1O
=

IO2

O2O
.

Thus O1 = O2. In other words, perpendicular bisectors of SR and A2A1

meet on IO and do not coincide because the triangle ABC is scalene. On
the other hand, perpendicular bisectors of SR and A2A1 meet at the centre
of the circle ωa. Hence the centre of ωa lies on the line IO, q.e.d.
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