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Senior league

1. To each point P in space a real number f(P ) is assigned so that

f(A) + f(B) = f(C) + f(D)

for every regular tetrahedron ABCD with side length 1. Prove that the function f is
constant.

(A. Golovanov)

2. Circles ω1 and ω2 pass through a point A and touch a line ℓ at B1 and B2,
respectively. A variable line m passes through A and meets ω1 and ω2 again at (variable)
points P1 and P2, respectively. The rays P1B1 and P2B2 intersect at a point P . Prove
that the tangent to the circumcircle of PP1P2 at P passes through a point independent
of the choice of m.

(A. Kuznetsov)

3. There are n > 3 sportsmen in a tennis club. Last month every two of them
played at most one match. It is known that if A defeated B and B defeated C, then
C defeated A. Prove that it is possible to select at least n/3 sportsmen so that no two
selected sportsmen played last month.

(S. Berlov)

4. Positive numbers a1, . . . , an and real numbers b1, . . . , bn, c, d satisfy

[a1x+ b1] + . . .+ [anx+ bn] = [cx+ d]

for all real x. Prove that a1, . . . , an cannot be all distinct.
(A. Golovanov)

Junior League

1. Positive integers a and b are given. A segment of positive integers contains more
multiples of a than multiples of b. Prove that it contains at least as many multiples of
2a as multiples of 2b.

(A. Golovanov)

2. A quadrilateral ABCD is given. Its diagonals are equal and intersect at a point
P . The rays AB and DC intersect at Q. It is known that ∠BPC = 2∠BQC. Prove
that the circle passing through B and tangent to the line AC at A is equal to the circle
passing through C and tangent to the line BD at D.

(E. Galahova, I. Kukharchuk )

3. In a zoo shop, four aviaries arranged in a circle contain 222 parrots each. Some-
times, a zoologist takes one parrot from an aviary and lets it go; together with it, she
lets go either one parrot from the opposite aviary, or two parrots from the aviary on the
left, or three parrots from the aviary on the right. At some moment, only one aviary
still contains parrots. What is the least possible number of the remaining parrots?

(M. Antipov)

4. See problem 3 of Senior league.
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SOLUTIONS

Senior League

1. Consider an arbitrary regular tetrahedron ABCD with side length 1.
We have

f(A) + f(B) = f(C) + f(D).

Exchanging the vertices B and C we also get

f(A) + f(C) = f(B) + f(D).

Comparing the equations we see that f(A) = f(D). In other words, the
value of the function does not change when the point is moved by any
vector of length 1.

Since every two points in the space can be connected by a polygonal
chain with segments of length 1, the values of f at every two points are
equal, q.e.d.

2. Let the point A′ is symmetric to A with respect to the line ℓ. We
will prove that all the tangents in question pass through A′. Note that

∠B1PB2 = ∠P1PP2 = 180◦− ∠AP1B1 − ∠AP2B2 =

= 180◦− ∠AB1B2 − ∠AB2B1 = ∠B1AB2 = ∠B1A
′B2.

From these equalities we obtain ∠B1PB2 = ∠B1A
′B2. Therefore the

quadrilateral B1A
′PB2 is cyclic and ∠A′PB1 = ∠A′B2B1. It follows that

∠P1P2P = ∠AB2B1 = ∠A′B2B1 = ∠A′PB1. This means that the angle
A′PB1 equals P1P2P independently of the choice of m. This PA′ is always
tangent to (PP1P2).

3. We consider a directed graph G where vertices are sportsmen and
an arc AB means that the player A defeated the player B. We will need
the following claim.

Claim. The vertices of G can be coloured with three colours so that
from the vertices of the first colour arrows lead only to the vertices of the
second colour, from the vertices of the second colour only to the vertices
of the third colour, and from the vertices of the third colour only to the
vertices of the first colour.
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Proof. We will prove it by induction on the number of vertices. The
base case is provided by the graphs where a vertex can have only incoming
arcs or only outgoing ones. In this case we use the first colour for all the
tails and the second colour for all the heads.

Induction step. Suppose the graph contains a vertex B with outgoing
arcs to the vertices C1, C2, . . . Ck and incoming arcs from the vertices A1,
A2, . . . Aℓ. The condition means that there is an arc from each Cj to each
Ai.

Removing B from the graph we obtain a graph satisfying the condition
and therefore admitting a desired colouring. Without loss of generality,
assume that C1 is of the first colour. Then all the heads of arcs going from
C1, and in particular all Ai, are of the second colour. Similarly, all the
tails of the arcs going to A1, and in particular all Cj, are of the first colour.
Now we can use the third colour for B, and the claim is proved.

Returning to the problem, we apply the Claim to the graph G. In the
resulting colouring, there is a colour used for at least n/3 vertices. As these
vertices are not connected by arcs, we get the desired set.

4. Obviously c ̸= 0. Putting y = cx + d in the original equation, we
obtain a similar equation with the numbers a1/c, . . . , an/c instead of a1,
. . . , an. If some of the former are equal, so are some of the latter, therefore
we can and will assume c = 1 and d = 0.

Every term [asx + bs] on the left is non-decreasing as a function of x,
and increases by 1 when x belongs to some arithmetical progression with
difference ds = 1/as. The right-hand side increases by 1 at all integer
points. This means that the above-mentioned differences ds are positive
integers, the progressions are disjoint, and their union is the set of all
integers. To prove that the differences of these progressions cannot be all
distinct we use the following

L em m a. Let 1, ε, ε2, . . . , εm−1 be all complex roots of unity of de-
gree m. Then the sum of their k-th degrees is 0 when k < m and non-zero
when k = m.

Proof. For k < m we have

1k + εk + ε2k + . . .+ ε(m−1)k =
εmk − 1

εk − 1
= 0.

For k = m all the terms of the sum equal 1.

We will prove that the greatest among the differences ds appears at least
twice among them. Suppose the contrary; let d1 > ds for 2 ⩽ s ⩽ n. Let
M be the least common multiple of all ds and ε a primitive root of unity
of degree M (that is, εM = 1 and εt ̸= 1 for 0 < t < M). Every integer

5



from 0 to M − 1 belongs to exactly one progression. Thus all the roots of
unity ε0, ε1, . . . , εM−1 of degree M are distributed among n groups, the
s-th group being the set of all numbers εa, where a belongs to the s-th
progression. Such group has the form

εrs, εrs+ds, . . . , εrs+M−ds

and consists of all the roots of unity of degree M/ds, multiplied by εrs. Let
us raise all the M -th roots of unity to the power of k = M

d1
. According to

the Lemma, the sum of all these k-th powers is 0. On the other hand, in
every group except the first one the sum of k-th powers is 0 (as M

ds
> k = M

d1
for s > 1), and in the first group it is non-zero, a contradiction.

Junior League

1. Let the segment contain m multiples of a and n multiples of b, where
m ≥ n+1. Then it contains at least [n2 ] multiples of 2a and at most [m2 +1]
multiples of 2b. Clearly the first amount is not less than the second one.

2. Define the point S so that BDCS is a parallelogram. Let ∠BQC =
α, then ∠SBQ = α (the angles SBQ and BQC are alternate), ∠ACS =
180◦ − 2α (∠BPC and ∠ACS are consecutive interior angles). It follows
that B belongs to the circle ω tangent to the sides of the angle ACS at A
and S. The central symmetry across the centre of parallelogram BDCS

maps the line CS to BD, the point B to C, and the circle ω to the circle
tangent to BD at D and passing through C.

S e c o n d s o l u t i o n. Note that the circles (ACQ) and (QBD) are
equal, since their chords AC and BD are equal and these chords subtend
angles equal to α from the point Q. The ratio of the radii of circles (ABS)
and (ACQ) is AB

QC , since from the common point A of these two circles the
chords AB and QC subtend the same angle ∠QAC. Similarly, the ratio
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of the radii of circles (CDT ) and (QBD) is CD
QB . To complete the proof it

is enough to check that these ratios are equal, i. e.

AB ·BQ = QC · CD.

Let E and F be the second points of intersection of the rays DP and AC
with the circle (QAD), respectively. The internal angle APD equals 2α
and is subtended by the arc AD equal to α, and, at the same time, by EF .
Thus the arc EF also equals α, the chords AD and EF are equal, and so
are the chords DF and AE. Since the segments DB and AC are equal,
we infer that BF = CE. Applying the secant theorem, we get

AB ·BQ = BF ·BD = CE · AC = QC · CD,

q.e.d.

A

C
B

D

P

Q

E

F

3. The answer is 5.
Let the aviaries in counter-clockwise order be A, B, C, D, and a, b, c,

d the current number of parrots in these aviaries, respectively.
Example. We can perform 71 operations of the form (a − 1, b − 3), 6

operations (a − 1, d − 2), 70 operations (c − 1, d − 3), and 3 operations
(c − 1, b − 2). After that all the parrots in B and D cease to be, and A
contains 5 more parrots than C. After that using the operation (a−1, c−1)
all the others join the choir invisible, except some five unfortunates in A.

Bound. Note that что 34 ≡ 1, 32 + 1 ≡ 0, and 2 · 33 + 1 ≡ 0 (mod 5).
Therefore the sum

a+ 3b+ 32c+ 33d mod 5

never changes under the operation. Initially this sum equals 0 mod 5, so
in the end, if all the parrots in B, C, and D are ex-parrots, the number of
parrots in A should be divisible by 5.

4. See Problem 3, Senior league.
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