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Senior league
5. In a 25×25 chessboard some squares are marked so that in each subboard of size

13 × 13 or 4 × 4 at least half the squares are marked. What is the minimum possible
number of marked squares in the entire chessboard? (S. Berlov)

6. A triangle ABC is given. Variable point X runs through the arc of its circumcircle
which does not contain A. Points Y on the ray XB and Z on the ray XC are defined
so that XA = XY = XZ. Prove that line Y Z goes through a fixed point.

(A. Kuznetsov)

7. Given are two polynomials f and g of degree 100 with real coefficients. For each
positive integer n there is an integer k such that

f(k)

g(k)
=

n+ 1

n
.

Prove that f and g have a common non-constant factor. (A. Golovanov)

8. A graph G has n vertices (n > 1). For each edge e let c(e) be the number
of vertices of the largest complete subgraph containing e. Prove the inequality (the
summation is over all edges of G):∑

e

c(e)

c(e)− 1
⩽

n2

2
. (D. Malec, C. Tompkins)

Junior League
5. In a 25×25 chessboard some squares are marked so that in each subboard of size

13 × 13 or 4 × 4 at least half the squares are marked. What is the minimum possible
number of marked squares in the entire chessboard? (S. Berlov)

6. Extension of angle bisector BL of the triangle ABC (where AB < BC) meets
its circumcircle at N . Let M be the midpoint of BL. Isosceles triangle BDC with base
BC and angle equal to ABC at D is constructed outside the triangle ABC. Prove that
CM ⊥ DN . (А. Mardanov)

7. Given are quadratic trinomials f and g with integral coefficients. For each
positive integer n there is an integer k such that

f(k)

g(k)
=

n+ 1

n
.

Prove that f and g have a common root. (A. Golovanov)

8. A toy factory produces several kinds of clay toys. The toys are painted in k
colours. Diversity of a colour is the number of different toys of that colour. (Thus,
if there are 5 blue cats, 7 blue mice and nothing else is blue, the diversity of colour
blue is 2.) The painting protocol requires that each colour is used and the diversities
of each two colours are different. The toys in the store could be painted according
to the protocol. However, a batch of clay Cheburashkas arrived at the store before
painting (there were no Cheburashkas before). The number of Cheburashkas is not less
that the number of the toys of any other kind. The total number of all toys, including
Cheburashkas, is at least (k+1)(k+2)

2
. Prove that now the toys can be painted in k + 1

colours according to the protocol. (F. Petrov)
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SOLUTIONS

Senior League

5. A n s w e r: 313, that is, a little more than one half.
L o w e r b o u n d. Consider two 13×13 subboards containing opposite

angles of the original board. They have one common square, therefore
their union contains at least 85 + 85− 1 = 169 marked squares. The two
remaining 12 × 12 subboards can be divided into 4 × 4 subboards and
therefore contain at least 144 marked squares, which gives at least 313
marked squares on the whole board.

E x a m p l e. In the chess colouring of the original 25 × 25 chessboard
with black angles we mark all white squares (312) and one central (black)
square. Then obviously at least half of the squares is marked in each 4× 4
subboard. In each 13× 13 subboard it is also true since every such board
contains 84 or 85 white squares and the central square.

6. We show that Y Z contains the incentre I of triangle ABC. Since X

lies on the arc BC of the circumcircle of ABC, ∠BXA = ∠BCA. Triangle
AXY is isosceles, therefore

∠AYX = 90◦ − 1

2
∠Y XA = 90◦ − 1

2
∠BCA.

Angle ∠AIB between bisectors is 90◦ + 1
2∠BCA, hence the quadrilateral

AIBY is cyclic. Thus, ∠AIY = ∠ABY . Similarly, ∠AIZ = ∠ACZ. As
the quadrilateral ABXC is cyclic, we have 180◦ = ∠ABY + ∠ACZ =
∠AIY + ∠AIZ. It follows that Y, I, Z are collinear.

7. Consider the difference f1(x) = f(x)−g(x). For each positive integer
n there is an integer kn such that f1(kn)

g(kn)
= 1

n . Let us divide g(x) by f1(x)
with remainder:

g(x) = f1(x)q(x) + r(x).

Dividing this equation by g(x) and substituting all kn we find that

q(kn) +
r(kn)

f1(kn)
= n (∗)
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for all n. Obviously lim
n→∞

kn = ∞ (since kn is a sequence of different

integers), and lim
n→∞

r(kn)
f1(kn)

= 0, that is for all n except possibly finite number
of values, n is the nearest integer to q(kn).

The polynomial q(x) is thus unbounded and therefore for some C it is
monotonous for x > C and for x < −C, and never attains at |x| ⩽ C any
values attained at |x| > C.

If the degree of q(x) is greater than 1, the inequality |q(x+1)−q(x)| > 3
holds for large enough x. This means that among three consecutive integers
greater than C at most two can be nearest integers to values of q(x) at
integral points, a contradiction. Therefore q(x) is linear: q(x) = ax+ b.

It follows from (∗) that the difference between akn+b and n becomes ar-
bitrarily large for large enough n, and, consequently, the difference a(kn+1−
kn) becomes arbitrarily close to 1. This difference, however, is a multiplied
by an integer, and therefore equals 1 for large enough n. Thus the differ-
ence kna+ b−n is eventually constant and tends to 0, that is, equals 0 for
large enough n.

We have proved that r(n) = 0 for all large enough n, hence r is identi-
cally 0, and g(x) = (ax+b)f1(x), i. e. f1 divides g and therefore f = g+f1,
q.e.d.

R e m a r k. We have seen that f and g have a common factor of degree
99. Since this degree is odd, the common factor has a real root, which is
also a common root of f and g.

8. In the following, |X| denotes the number of elements of a set X.
We prove the claim by induction on n. Let G be an n-vertex graph with

edge set E. If the graph contains no edges, then the bound follows trivially
so assume G has at least one edge. Let k be the size of the largest clique
in G, and let C be a clique of size k. We split the edges E into three parts:
EC , the edges within C; EG\C , the edges within G \ C; and ES, the edges
that connect C and G \ C. We bound the contribution to the sum from
each of these separately.

1. Since C is a clique of maximum size in G, we know that EC contains
k(k − 1)/2 edges, all with c(e) = k. So we can see that∑

e∈EC

c(e)

c(e)− 1
=

k(k − 1)

2
· k

k − 1
=

k2

2
.

2. For all v ∈ V (G \ C), let Cv = {w ∈ C | {v, w} ∈ E}. Note that
Cv ∪ {v} is itself a clique, and so we may conclude that |Cv|+ 1 ⩽ k, and

5



c(e) ⩾ |Cv|+ 1 for all edges e that connect v to C. Thus, we obtain that∑
e∈ES

c(e)

c(e)− 1
⩽

∑
v∈V (G\C)

|Cv| ·
|Cv|+ 1

|Cv|
⩽

∑
v∈V (G\C)

k = (n− k)k.

3. Lastly, our induction hypothesis implies that∑
e∈EG\C

c(e)

c(e)− 1
⩽

(n− k)2

2
.

Combining all three of the estimates above we obtain that∑
e∈E

c(e)

c(e)− 1
⩽

k2

2
+ k(n− k) +

(n− k)2

2
=

n2

2
,

as required.

R e m a r k. The equality holds if and only if G is a multipartite graph
with classes of equal size.

Junior League

5. See Problem 5, Senior league.

6. Note that BL ⊥ BD, since in isosceles triangle BCD

∠CBD = 90◦ − 1

2
∠BDC = 90◦ − 1

2
∠ABC = 90◦ − ∠LBC.

A

B C

N

M

D

L

Then

DM 2 −DC2 = BM 2 = (1)
= NM 2 − (NM −BM)(NM +BM) = (2)
= NM 2 −NL ·NB = (3)
= NM 2 −NC2 (4)

Here (1) is Pythagorean theorem, and equality of (1)
and (2) is checked by expanding.

It is well-known that the equation DM 2 − DC2 = NM 2 − NC2, is
equivalent to the desired perpendicularity.

7. Consider the difference f1(x) = f(x)−g(x). For each positive integer
n there is an integer kn such that f1(kn)

g(kn)
= 1

n . In other words, f1(x)
g(x) can be

arbitrarily small for arbitrarily large x. Therefore the polynomial f1(x)
is linear (and non-constant, otherwise quadratic trinomial g/f1 attains all
positive integral values, which is impossible).
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Let us divide g(x) by f1(x) with remainder:

g(x) = f1(x)q(x) + r(x).

Since f1 is linear and the coefficients of polynomials are integers, the re-
mainder r is a rational number (a constant polynomial). The partial
quotient q(x) = ax + b is also linear, and for each positive integer n
(except possibly the unique root of f1) there is an integer kn such that
q(kn) +

r
kn

= n. It follows that the coefficients of q(x) are also rational,
and the numbers q(kn) are common fractions with bounded denominators
(their denominators divide the common denominator of the coefficients of
q(x)). Then the denominators of the numbers r

kn
are also bounded, which

implies r = 0. Therefore the polynomial f1(x) divides g(x) and conse-
quently f(x) = g(x) + f1(x), so the root of f1 is also common root of f
and g.

8. We prove the claim by induction on k.
The base case, k = 0: no toys in the store, there is nothing to paint,

and now they give us Cheburashkas and say: “Paint it in one colour”. OK,
done.

Induction step. Let us reduce the problem of painting toys with k + 1
colours to smaller number of colours. Informally speaking, our main con-
cern in this reduction will be the number of Cheburashkas (they have to
retain the majority).

We begin with a general observation from the viewpoint of the painter
(that is, the person responsible for painting). Let us arrange the colours in
increasing order of diversity. Then the diversity of i-th colour is at least i.
The painter can minimize his or her efforts, making the diversity of i-th
colour exactly i for each i, moreover, painting only one toy of each kind
appearing in i-th colour. With such work ethics, some toys may remain
unpainted. The painter can postpone painting these toys to the last minute,
and even then paint them with any available colours – this will not breach
the protocol.

To each kind of toys we will allot a separate shelf with places numbered
from left to right. On each shelf we reserve i–th place for the toy of i–th
colour (if available). Then i–th “column” of our closet will contain exactly
i toys, and the first k columns k(k+1)

2 toys. We will put unpainted toys on
the right end of the appropriate shelves. We will also have a special shelf
for Cheburashkas. After the delivery of Cheburashkas we put them in the
“unpainted” part of the shelf, but consider them so far as a separate group,
distinct from the unpainted toys.

The painter hidden in each of us suggests that to paint the toys with
k + 1 colour according to protocol it is enough to leave only (k+1)(k+2)

2 in
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Species 1 2 3 4 . . . k − 1 k unpainted
Hares • • • . . . . . . . . . ◦ ◦ ◦

Elephants • • . . . . . . . . . ◦ ◦
Edgehogs • • . . . . . . . . . ◦

Tiggers •
Elks •
Owls •

. . .
Cheburashkas ◦ ◦ ◦ ◦ . . .

Figure 1: Arranging toys on shelves

the closet, all painted toys and appropriate number of Cheburashkas, plus
some unpainted toys, if we don’t have enough Cheburashkas. Assume that
Fig. 1. shows exactly that arrangement of toys.

Note that, because of the nature of our closet, each shelf contains at
most k painted toys. And since we have left (k+1)(k+2)

2 toys, including
k(k+1)

2 = (k+1)(k+2)
2 − k painted toys, Cheburashkas still form the most

numerous (not strictly) kind of toys, even if some of them are outside the
closet.

We have to paint the toys in the closet with k+1 colours. Let us try to
solve the most complicated problem, that of choosing the toys for (k+1)-th
colour. Plotting to apply induction, we reserve for (k + 1)-th colour the
toys now coloured with k-th colour; for that we just rename k-th place of
each shelf to (k + 1)-th. Now each shelf has places from 1 to (k − 1), the
place with number k+1 and the part for unpainted toys. Already we have
k toys to paint with (k + 1)-th colour, and we need one more.

First of all, if some shelf contains an unpainted toy but no toy assigned
to painting with (k+1)-th colour, assign it, too, to painting with (k+1)-th
colour. Then the list of toys to paint with the (k+1)-th colour is complete,
there are k(k+1)

2 toys outside that list, these toys satisfy the diversity rule
for k − 1 colours, and Cheburashkas are still the most numerous group
among them. Therefore these toys can be painted with k colours by the
induction hypothesis.

Now suppose that there are some unpainted toys, but none of them can
be transferred to (k + 1)-th colour. Then each shelf containing (at least
one) unpainted toy contains also an empty place among places from 1 to
k−1. Otherwise, every such shelf contains at least k toys before the arrival
of Cheburaskas, therefore, at least k Cheburashkas arrived. In view of the
above artistic observations, it means that there are no unpainted toys at
all, that is, there are k(k+1)

2 painted toys and k Cheburashkas. This means
that the case is impossible.

Let us try to repair the colouring we have. First we rearrange the shelves
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so that the shelves assigned to painting with (k + 1)-th colour are at the
top (see. Fig. 2). These shelves contain all unpainted toys.

Species 1 2 3 4 . . . k − 1 k + 1 unpainted
Hares • • × • . . . . . . • ◦ ◦ ◦

Elephants • • . . . . . . • ◦ ◦
Edgehogs • • . . . . . . • ◦

. . . . . . . . . . . . . . .
Tiggers •

Elks •
Owls •

. . .
Cheburashkas ◦ ◦ ◦ ◦ . . .

Figure 2: Painting with (k + 1)-th colour.

C a s e 1. One of the upper shelves contains an unpainted toy and
empty i-th place (that is, it dos not contain a toy of i-th colour), but some
of the bottom shelves has a toy in the i-th place (in the figure 2 we marked
the empty space in the third column of the row “hares” and underlined
the occupied place in the row “tiggers”). Now we rearrange the colouring:
we paint the unpainted toy from the top shelf with i-th colour, and the
toy of i-th colour from the bottom shelf will be discoloured and assigned to
(k+1)-th colour (Fig. 3). After that we can apply the induction hypothesis.

Species 1 2 3 4 . . . k − 1 k + 1 unpainted
Hares • • • • . . . . . . • ◦ ◦

Elephants • • . . . . . . • ◦ ◦
Edgehogs • • . . . . . . • ◦

. . . . . . . . . . . . . . .
Tiggers •

Elks •
Owls •

. . .
Cheburashkas ◦ ◦ ◦ ◦ . . .

Figure 3: Painting with (k + 1)-th colour.

C a s e 2 (opposite to Case 1). For each empty place on each top shelf
all places under it on the bottom shelves are occupied. This means that
the most numerous kind of toys after Cheburashkas is in the upper part of
the closet. Then we assign one Cheburashka to painting with (k + 1)-th
colour. Since each row in the upper part contains a toy assigned to colour
k + 1, after removing all toys assigned to that colour we get a situation
where the induction hypothesis holds (in terms of diversity and dominating
of Cheburashkas).
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