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Senior league
1. Prove that a positive integer of the form n4+1 can have more than 1000 divisors

of the form a4 + 1 with integral a. (A. Golovanov)

2. Chip and Dale play on a 100× 100 table. In the beginning, a chess king stands
in the upper left corner of the table. At each move the king is moved one square right,
down or right-down diagonally. A player cannot move in the direction used by his
opponent in the previous move. The players move in turn, Chip begins. The player
that cannot move loses. Which player has a winning strategy?

(D. Shiryaev, O. Badazhkova)

3. All perfect squares, and all perfect squares multiplied by two, are written in
a row in increasing order. Let f(n) be the n-th number in this sequence. (For instance,
f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 8.) Is there an integer n such that all the numbers

f(n), f(2n), f(3n), . . . , f(10n2)

are perfect squares? (F. Petrov)

4. A triangle ABC is given. The segment connecting the points where the excircles
touch AB and AC meets the bisector of angle C at X. The segment connecting the
points where the excircles touch BC and AC meets the bisector of angle A at Y . Prove
that the midpoint of XY is equidistant from A and C. (I. Frolov)

Junior League
1. Triangular numbers are numbers of the form 1+2+. . .+n with positive integral n,

i. e. 1, 3, 6, 10, . . . . Determine the greatest non-triangular integer which is not a sum
of different triangular numbers. (A. Golovanov)

2. We call an edgehog a graph in which one vertex is connected with all others and
there are no other edges; the number of vertices of this graph we call the size of the
edgehog. A graph G with n > 1 vertices is given. For each edge e, let us denote s(e)
the size of the largest edgehog in G containing this edge. Prove the inequality (the
summation is over all edges of G): ∑

e

1

s(e)
⩽

n

2
.

(D. Malec, C. Tompkins)

3. Three sportsmen ran with different constant velocities along a track of length 1.
They started simultaneously at one end of the track. Upon reaching an end of the track,
every sportsman immediately turned around and continued running in the opposite
direction. After some time all three sportsmen met at the starting position and finished
the practice. What is the maximum S for which it is certainly true that at some moment
the sum of pairwise distances between the sportsmen was at least S?

(A. Golovanov, I. Rubanov)

4. A triangle ABC is given. N and M are the midpoints of AB and BC, re-
spectively. The bisector of angle B meets the segment MN at E. H is the base of
the altitude drawn from B in the triangle ABC. The point T on the circumcircle of
ABC is such that the circumcircles of TMN and ABC are tangent. Prove that points
T,H,E,B are concyclic. (M. Yumatov)
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SOLUTIONS

Senior League

1. F i r s t s o l u t i o n. For each integer a there is an integer b > a
such that a4+1 divides b4+1). Indeed, if b ≡ a (mod a4+1) (for instance,
b = a4 + a+ 1), then b4 ≡ a4 ≡ −1 (mod a4 + 1).

Using that observation we can construct an increasing sequence a0, a1,
. . . such that a4i + 1 divides a4i+1 + 1 for all i. Then obviously a4n + 1 has
at least n divisors of the desired form.

S e c o n d s o l u t i o n. Let us take an arbitrary a > 1 and construct
the sequence (ak) defined by

a1 = a4 + 1, ak+1 = (a1a2 · · · ak)4 + 1, k = 1, 2, . . . , 1000.

In this sequence ai and aj are coprime for i ̸= j, and for each ai the
congruence x4 ≡ −1 (mod ai) has a solution, say xi. Now, by Chinese
Remainder Theorem, we can find a number n satisfying the system of
congruences

n ≡ xi (mod ai), i = 1, 2, . . . , 1001.

Then n has the desired property.

2. A n s w e r: Dale wins.
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We define the position of a square by coordinates (a, b), where a is the
number of column between 99 and 0, b is the number of row betweenn 99
and 0 and the starting point is (99, 99). We call a square (a, b) good if 3
divides a + b, a ⩽ 2b, and b ⩽ 2a; in particular, the squares (0, 0) and
(99, 99) are good. Good squares are well described as squares accessible
from (0, 0) by knight’s moves of to the left and to the top.

Here is a winning strategy for Dale. At every move Chip leaves a good
square and Dale will try to get back to a good square. To do it, Dale should
respond to a diagonal move by vertical or horizontal one (drawing nearer
to the diagonal (x, x)), and to a vertical or horizontal move by diagonal
one. If Dale can follow this strategy, he will inevitably reach the good point
(0, 0) and win.

The only case where Dale cannot follow that strategy arises when Chip
moves right from (a, 2a) to (a−1, 2a) (and, similarly, when he moves from
(2a, a) to (2a, a− 1)). In this case Dale has to change the strategy: from
that moment he should always move down (or, respectively, right). Then
the king will always stay in the region 2a < b (or 2b < a), and Dale will
be always able to move.

3. The answer is no.
Clearly n = 1 does not have the required property, so we assume n > 1.
Let f(n) be a perfect square, and the first n numbers in the row contain

u squares and v squares multiplied by 2, i. e. n = u+ v, where 2v2 < u2 <

2(v+1)2. Consider the difference ε = u−v
√
2. Since v

√
2 < u < (v+1)

√
2,

we have 0 < ε <
√
2.

C a s e 1. Let ε < 1. Consider the smallest integral k such that kε >√
2; for it we obviously have kε <

√
2 + 1. Then

ku > (kv + 1)
√
2 = k(u− ε) +

√
2 > ku− 1,

that is, (ku)2 > 2(kv + 1)2 > (ku− 1)2, therefore,

f(kn) = f(kv + 1 + ku− 1) = 2(kv + 1)2

is not a square. However,

ε = u− v
√
2 =

u2 − 2v2

u+ v
√
2
⩾

1

u+ v
√
2
>

1√
2(u+ v)

=
1

n
√
2
,

thus k < 2n, and n does not satisfy the requirement.
C a s e 2. Now let ε > 1 (clearly ε = 1 is impossible). Then

(2v + 1)
√
2 < 2u < (2v + 2)

√
2.
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Since f(2n) = f(2u+2v) is a perfect square, f(2n) = (2u−1)2, therefore,
2u− 1 > (2v + 1)

√
2. At the same time

(2u− 1)− (2v + 1)
√
2 = 2(u− v

√
2)− 1−

√
2 <

√
2− 1 < 1.

Now we can apply above argument (see case 1) to the number 2n. That
means that some of the numbers f(2n), f(4n), . . . , f(4n2) is not a perfect
square.

4. Let Ia, Ic the respective circumcentres, A1 and C1 the bases of re-
spective bisectors. We make use of the following theorem (Trillium lemma,
or Mansion’s Theorem): the midpoint of IaIc is equidistant from A and C,
that is, lies on the perpendicular bisector of AC. To prove that the
midpoints of AC,XY , and IaIc are collinear, we check that AY/AIa =
CX/CIc.

A

B

C1
A1

C

Ia

Ic

Tb

Ta

X

Y

p− c p− a

p− b

Let a, b, c, and p denote the respective sides of triangle ABC and its
semiperimeter. The points where the excircles touch the sides BC and
AC we denote Ta and Tb respectively. Then ATb = p − c, CTb = p − a,
and CTa = p − b. Using the angle bisector theorem we find CA1 = ab

b+c .
Applying Menelaus’s theorem to the triangle AA1C gives

AY

Y A1
=

ATb

TbC
· CTa

TaA1
=

p− c

p− a
· p− b

p− b− ab
b+c

=

=
a+ b− c

b+ c− a
· (a+ c− b)(b+ c)

(a+ c− b)(b+ c)− 2ab
=

(a+ b− c)(a+ c− b)(b+ c)

(b+ c− a)(a+ b+ c)(c− b)
.

Then
AY

AA1
=

(a+ b− c)(a+ c− b)(b+ c)

(b+ c− a)(a+ b+ c)(c− b) + (a+ b− c)(a+ c− b)(b+ c)
=

=
(a+ b− c)(a+ c− b)(b+ c)

2b(a2 + c2 − b2)
.
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In order to find AA1

AIa
, we draw perpendiculars to BC from A and Ia to

BC which are the altitude ha =
2S
a and the exradius ra =

2S
b+c−a , where S

is the area of ADC. It follows that

AA1

AIa
=

ha

ha + ra
=

2S
a

2S
a + 2S

b+c−a

=
b+ c− a

b+ c
.

Multiplying the two ratios we get

AY

AIa
=

AY

AA1
· AA1

AIa
=

(a+ b− c)(a+ c− b)(b+ c− a)

2b(a2 + c2 − b2)
.

This expression in symmetric with respect to b and c, therefore the ratio is
the same. Thus the problem is solved.

Junior League

1. The answer is 33.
Triangular numbers not exceeding 33 are 1, 3, 6, 10, 15, 21, and 28. The

sum of the first five numbers is less than 33, therefore to represent 33 we
need 21 or 28. However, if 28 is used, the other terms should add up to
5, which is impossible. And if we use 21, the rest is 12, and 12 cannot be
obtained either with 10 (the rest becomes 2) or without 10 (1+3+6 < 12).

In the following, tn denotes the n-th triangular number n(n+1)
2 .

We claim that all numbers greater than 33 can be represented in the de-
sired form. To establish it, we prove, firstlym that all numbers between 34
and 78 can be represented using summands not exceeding 36, and, secondly
(by induction on n ⩾ 9), that all numbers between 34 and 78+ t9+ . . .+ tn
can be represented using summands not exceeding tn. Since 78+t9+. . .+tn
can be arbitrarily large, this solves the problem.

All numbers between 9 and 22, except 12, are represented by summands
not exceeding 15: 9 = 6 + 3, 10 = 10, 11 = 10 + 1, 13 = 10 + 3,
14 = 10 + 3 + 1, 15 = 15, 16 = 10 + 6, 17 = 10 + 6 + 1, 18 = 15 + 3,
19 = 15 + 3 + 1, 20 = 10 + 6 + 3 + 1, 21 = 15 + 6, 22 = 15 + 6 + 1.

Adding 21 to these numbers, we represent all numbers between 30 and
43, except 33, by summands not exceeding 21.

Adding 28 to the numbers between 16 and 43, we obtain all numbers
between 44 and 71, except 51 and 61.

Noting that 51 = 36+ 15+ 10, 61 = 36+ 15+ 10+ 6+3+1, we prove
our first claim.

To prove the second claim, we add to numbers between 34 and 78,
already obtained, the number t9 = 45, thus obtaining numbers from 79 to
78 + t9 = 123.
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Suppose that all numbers between 34 and 78+t9+. . .+tn are represented
by summands not exceeding tn. Adding tn+1, we get all numbers between
34+tn+1 and 78+t9+. . .+tn+1. It remains to note that the interval between
34 and 78+t9+. . .+tn and the interval between 34+tn+1 78+t9+. . .+tn+1

intersect, since 34+ tn+1 ⩽ 78+ t9+ . . .+ tn. Indeed, subtracting 34 and tn
from both sides, we get the obvious inequality n+1 ⩽ 45+ t9+ . . .+ tn−1.

2. For each vertex v let w(v) be the sum of numbers 1
s(e) over all edges

going from v. For every such e we obviously have s(e) ⩾ deg(v), and
therefore

w(v) ⩽
∑
e:v∈e

1

deg v
= 1.

Then
2
∑
e

1

s(e)
=

∑
v

w(v) ⩽ n,

as desired.

3. A n s w e r: 8
5 .

Clearly the sum of pairwise distances between the three sportsmen is
twice the largest of these distances. It is also obvious that the velocities of
the sportsmen are proportional to three positive integers (if the sportsmen
covered the track a, b, and c times during the workout, their velocities are
proportional to the numbers a, b, and c).

First we consider the movement of two sportsmen.

L e m m a. Let the velocities of two sportsmen are proportional to co-
prime integers p and q > p. Then the greatest distance between the two
sportsmen is 1 if one of the numbers p and q is even, and 1− 1

q if p and q
are both odd.

P r o o f. If p is even and q is odd, when the first sportsman has run
the distance p, and the second one the distance q, the sportsmen are in the
opposite ends of the track, at a distance 1.

Let p and q be odd. Note that in the interval between two consecutive
moments when one of the sportsmen is at an end of the track, both sports-
men move with constant velocities without changing direction; therefore
the distance between them is the greatest in one of these two moments.
If the first sportsman is at an end of the track, he has run an integral
distance n. Then the second sportsman has run the distance nq

p . This
number is a fraction with denominator p. It can be an integer only when
p divides n, and then its parity is that of n. This means that the second
sportsmen is where the first one is. In all other cases the distance between
the sportsmen is less than 1 and therefore does not exceed 1− 1

p . Similarly,
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when the second sportsmen is at an end of the track, the distance between
the sportsmen does not exceed 1− 1

q .
We claim that at some moment the distance between the sportsmen

equals 1 − 1
q . Since p and q are coprime, there is a positive integer k ⩽ q

satisfying the congruence

kp ≡ q + 1

2
(mod q).

This congruence means that kp = mq + q+1
2 , that is, 2kp = (2m+ 1)q + 1

for some integral m. Therefore, when the fast sportsmen has run the track
k times in both directions and returned to the start, the slow sportsman
has run the distance 2kp

q = 2m+1+ 1
q , and is at a distance 1− 1

q from the
start. The lemma is proved.

If the ratio of the sportsmen’s velocities is 1 : 3 : 5, by virtue of the
Lemma the greatest distance between the first two sportsmen is 2

3 , and be-
tween the third one and any other — 4

5 . Thus the greatest sum of distances
between the sportsmen is 8

5 .
It is seen from the Lemma that the greatest distance between two sports-

men whose velocities are proportional to coprime odd numbers p and q > p

can be less than 4
5 only when q = 3 (and, consequently, p = 1). But if the

middle-paced sportsman is 3 times faster than the slowest one and 3 times
slower than the fastest one, the ratio of other two velocities is 9, and the
distance between the other two sportsmen is 8

9 >
4
5 at some moment.

4. We use the notation (XY Z) for the circumcircle of triangle XY Z.
Since the triangles ABC and BMN are homothetic with centre B, the
circles (ABC) and (BMN) are tangent at B. Let F be the intersection
point of tangents to the circle (ABC) at B and T . Note that these tangents
are also tangents to the circles (BMN) and (TMN), therefore the powers
of F with respect to these circles are equal. Thus F lies on the radical axis
of the circles (BMN) and (TMN), that is, on the line MN .

Let L and K be the points where the line AC meets the lines BE and
BF respectively. Since MN is the midline of triangle ABC, E and F are
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midpoints of BL and BK. Because BK is tangent to the circle (ABC),
∠KBA = ∠BCA, hence

∠KBL = ∠KBA+ ∠ABL = ∠BCA+ ∠CBL = ∠KLB.

Thus the triangle KBL is isosceles, and its median KE is also its altitude.
It remains to note that the circle with diameter BK contains all four points
T,H,E,B.
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