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1. The numbers 1, 2, 3, . . . are arranged in a spi-

ral in the vertices of an infinite square grid (see fig-
ure). Then in the centre of each square the sum of the
numbers in its vertices is placed. Prove that for each
positive integer n the centres of the squares contain
infinitely many multiples of n.

(K. Kokhas)

2. In a graph with n vertices every two vertices are connected by a
unique path. For each two vertices u and v, let d(u, v) denote the distance
between u and v, i.e. the number of edges in the path connecting these
two vertices, and deg u denote the degree of a vertex u. Let W be the
sum of pairwise distances between the vertices, and D the sum of weighted
pairwise distances:

D =
∑
{u,v}

(deg u+ deg v)d(u, v).

Prove that D = 4W − n(n− 1).
(I. Gutman)

3. Prove for integral n ⩾ 2 the inequality
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(J. Liu)

4. Two points A and B and line ℓ are fixed in the plane so that ℓ is not
perpendicular to AB and does not intersect the segment AB. We consider
all circles with a centre O ̸∈ ℓ passing through A and B and meeting ℓ at
some points C and D. Prove that all the circumcircles of triangles OCD
touch a fixed circle.

(S. Berlov)
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Junior League

1. Prove that for a, b, c ∈ [0, 1] the following inequality holds:

(1− a)(1 + ab)(1 + ac)(1− abc) ⩽ (1 + a)(1− ab)(1− ac)(1 + abc).

(G. Raposo)

2. Serge and Tanya want to show Masha a magic trick. Serge leaves the
room. Masha writes down a sequence (a1, a2, . . . , an), where all ak equal
0 or 1. After that Tanya writes down a sequence (b1, b2, . . . , bn), where all
bk also equal 0 or 1. Then Masha either does nothing or says “Mutabor”
and replaces both sequences: her own sequence by (an, an−1, . . . , a1), and
Tanya’s sequence by (1 − bn, 1 − bn−1, . . . , 1 − b1). Masha’s sequence is
covered by a napkin, and Serge is invited to the room. Serge should look
at Tanya’s sequence and tell the sequence covered by the napkin. For what
n Serge and Tanya can prepare and show such a trick? Serge does not have
to determine whether the word “Mutabor” has been pronounced.

(A. Antropov, T. Gizatullin)

3. Point L inside triangle ABC is such that CL = AB and ∠BAC +
∠BLC = 180◦. Point K on the side AC is such that KL ∥ BC. Prove
that AB = BK.

(A. Antropov)

4. Two players play a game. They have n > 2 piles containing n10 + 1
stones each. A move consists of removing all the piles but one and di-
viding the remaining pile into n nonempty piles. The player that cannot
move loses. Who has a winning strategy, the player that moves first or his
adversary?

(T. Abuku, K. Sakai, M. Shinoda, K. Suetsugu)
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SOLUTIONS

Senior League

1. The squares of the grid form a spiral consisting of straight “corridors”,
which turn at right angles. It is easy to see that the numbers in the centres
of adjacent squares differ by 4 and are divisible by 4. Therefore the squares
of a corridor are filled with consecutive multiples of 4. It follows that any
corridor long enough contains a multiple of n.

2. Asphalt plant lemma. Let T be an arbitrary tree with n vertices and
α any of its vertices. Then∑

u

(deg u− 1) d(u, α) =
∑
u

d(u, α)− (n− 1).

P r o o f Imagine that the vertices are towns, edges are dirt roads, and
we build an asphalt plant in α with the intention of surfacing all the roads.
One edge requires one ton of asphalt, the surfacing itself is free but trans-
portation is expensive, that is, carrying one ton of asphalt costs one dollar.
Now, what will we spend on total asphaltization? The business plan is
obvious: we carry the necessary asphalt to each city and surface all the
roads going from it away from α. These expenses are counted in the left
hand side of our equality. Now let us unring the bell: dismantle all the
asphalt and carry it back to alpha. For each edge vu we remove one ton of
asphalt from the road, place it in u (the far end of vu) and then carry it
to the plant, thus spending d(u, α) dollars. We returned the pavement to
factory settings, but the evacuation of each road cost 1 dollar more than
its delivery. This is expressed by the right hand side. □

Now we will deduce the claim from this lemma.
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F i r s t s o l u t i o n. Let V — be the set of all vertices. Note that

D =
∑

{u,v}⊂V

(deg u+ deg v)d(u, v) =

=
∑
v∈V

∑
u∈V

deg u · d(u, v) =

=
∑
v∈V

∑
u∈V

(deg u− 1)d(u, v) +
∑
v∈V

∑
u∈V

d(u, v) =
(∗)

=
∑
v∈V

(∑
u∈V

d(u, v)− (n− 1)
)
+2W =

= 4W − n(n− 1).

The lemma is used in the equality (∗).
S e c o n d s o l u t i o n. We will prove the equality D = 4W −n(n− 1)

for every tree with n vertices by induction in n. The base n = 1 is trivial.
Now we prove the inductive step. Let a tree T ′ with n vertices be

obtained from a tree T with n− 1 vertices by joining a leaf vertex α to a
vertex β. Then

D(T ′) =
∑

{u,v}⊂T ′

(degT ′ u+ degT ′ v)d(u, v) =

=
∑

{u,v}⊂T ′:
α/∈{u,v}

(degT ′ u+ degT ′ v)d(u, v) +
∑
u∈T ′:
u̸=α

(degT ′ u+ degT ′ α)d(u, α) =

= D(T ) +
∑
u∈T

d(u, β) +
∑
u∈T ′:
u̸=α

(degT ′ u+ 1)d(u, α),

Here equalizing term
∑
u
d(u, β) comes from the relation degT ′ β = degT β + 1.

Then

W (T ′) =
∑

{u,v}⊂T ′

d(u, v) =
∑

{u,v}⊂T ′:
α/∈{u,v}

d(u, v)+
∑
u∈T ′:
u̸=α

d(u, α) = W (T )+
∑
u

d(u, α).

By the induction hypothesis we have

D(T ) = 4W (T )− (n− 1)(n− 2).

The inductive step is proved as soon as we prove the equality∑
u

(deg u+ 1)d(u, α) +
∑
u

d(u, β) = 4
∑
u

d(u, α)− 2(n− 1). (∗)

To simplify it, we note that∑
u∈T

d(u, β) =
∑
u∈T ′

d(u, α)− (n− 1).
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Removing three sums
∑

u d(u, α) from both sides of (∗), we obtain the
asphalt plant lemma:∑

u

(deg u− 1) d(u, α) =
∑
u

d(u, α)− (n− 1).

3. Let f(x) = 3
√
x. The function f(x) is concave on [0, 1], that is,

(1− α)f(x) + αf(y) ⩽ f((1− α)x+ αy) (∗)

for x, y, α ∈ [0; 1]. You can notice that by looking on the graph of f on
[0; 1], and prove it by differentiating f twice or cubing (∗) a little longer.

For each k from 1 to n − 1 we apply (*) to x = k
n+1 , y = k+1

n+1 , α = k
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we get the inequalities
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It remains to add up everything and divide by n− 1.

4. In fact, there are two such fixed circles. Let ω denote the variable
circle passing through A and B.

We plan to construct circles Ω1 and Ω2 so that both are tangent to ℓ
and preserved under inversion about any ω. Since ℓ is tangent to both our
hypothetical circles Ω1 and Ω2, the image of ℓ under the inversion about ω,
that is, the circumcircle of OCD, will also touch Ω1 and Ω2, thus solving
the problem.

We will construct Ω1 and Ω2 now. Consider the point E ∈ ℓ such that
EA = EB. Let the circle δ with centre E and radius EA meet ℓ at F1

and F2. Choosing F1, we raise the perpendicular to ℓ at it, and let this
perpendicular meet the line AB at G1. The circle with centre G1 and
radius G1F1 is the desired Ω1.

Indeed, the construction ensures that Ω1 is tangent to ℓ. The power of
G1 with respect to this circle is G1F

2
1 = G1A · G1B, i. e., the inversion

about Ω1 transforms A and B into each other. This means that every circle
containing A and B is preserved under inversion about Ω1. Now, if ω is
preserved under inversion about Ω1, Ω1 is preserved under inversion about
ω (since both claims mean that ω and Ω1 are perpendicular), q.e.d.

The circle Ω2 is constructed similarly.
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Junior League

1. F i r s t s o l u t i o n. For a = 0 the inequality is obvious. Let a ̸= 0.
The desired inequality is the product of two inequalities, “with pluses” and
“with minuses”:

(1+ab)(1+ac) ⩽ (1+a)(1+abc) and (1−a)(1−abc) ⩽ (1−ab)(1−ac).

Both are immediately checked by expanding, dividing by a and factorizing
of the rest. For instance, let us expand the second inequality:

1− a− abc+ a2bc ⩽ 1− ab− ac+ a2bc.

Collecting all the terms on the right, we get 0 ⩽ 1 + bc − b − c, i.e.,
0 ⩽ (1− b)(1− c), which is clear.

S e c o n d s o l u t i o n. The problem can also be done by smoothing,
that is, using the (well-known) fact that the sum of two positive real num-
bers whose product is fixed increases when their difference increases (this
is merely the identity (x+ y)2 = 4xy+ (x− y)2). Let us expand partially:

(1− a)(1+ ab+ ac+ a2bc)(1− abc) ⩽ (1+ a)(1− ab− ac+ a2bc)(1+ abc)

and fix a. Now, if we replace b and c by 1 and bc, the outer factors on
both sides do not change. It follows from the above observation that the
middle factor on the left increases and that on the right decreases. To
prove the inequality it suffices now to check it for b = 1. But with b = 1
the inequality becomes

(1− a)(1 + a+ ac+ a2c)(1− ac) ⩽ (1 + a)(1− a− ac+ a2c)(1 + ac)

which is actually an identity.
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2. A n s w e r: for even n.
Masha can write 2n different sequences, some of them forming pairs

connected by the operation “Mutabor”, and some separate sequences that
remain unchanged under this operation (of course, we will call them palin-
dromes). Similarly, Tanya’s 2n sequences form some pairs of sequences
transformed to each other by the operation “Mutabor”, and separate se-
quences that remain unchanged under this operation (which we will call
antipalindromes). To succeed with their trick, Tanya and Serezha have to
assign to each Masha’s sequence s some sequence f(s) which will be Tanya’s
answer to s. Of course, distincts sequences f(s) should be assigned to dis-
tinct s. Moreover, since Masha can say “Mutabor”, two sequences forming
a pair should be assigned to sequences forming a pair. It follows that
antipalindromes should be assigned to palindromes.

When n = 2k+1 is odd, there are no antipalindromes (since bk+1 cannot
be equal to 1− bk+1), while some palindromes (for instance, sequences of n
equal numbers) exist. In this case it is impossible to assign antipalindromes
to palindromes, and the trick goes wrong.

If n = 2k is even, we have 2k palindromes and 2k antipalindromes (since
both are uniquely defined by the first k terms of a sequence), and the rest
of the sequences, both Masha’s and Tanya’s, form (2n − 2k)/2 pairs. Thus
Tanya and Serezha can simply list all the sequences, establish the desired
one-to-one mapping and show the trick to Masha.

A

B

C

D

K

L

3. Let point D be symmetric to A with respect
to line BC. Then ∠BDC = ∠BAC, therefore
∠BDC +∠BLC = 180◦, i. e. quadrilateral BDCL

is cyclic. Let K ′ ̸= C be the point where the circum-
circle of BDCL meets line AC. Note that ∠LBC =
∠BCD = ∠BCA (the first equality follows from
parallelism, the second one is true because A and D

are symmetric). This equality implies that LBCK ′ is an isosceles trape-
zoid, LK ′ ∥ BC, and therefore K = K ′. Then BK = BD since these
chords subtend equal angles, and BD = AB by symmetry.

4. A n s w e r: The first player wins.
Note that n10 + 1 = n(n− 1)

(
n8 + n7 + . . .+ n+ 1) + n+ 1.

We claim that the winning positions in this game (that is, the positions
one should left to the adversary to win) are those where all the numbers of
stones in the piles leave remainders between 1 and n− 1 when divided by
n(n− 1). It follows immediately that the first player wins.

Indeed, the final position (where one cannot move) are those where
each pile contains between 1 and n− 1 stones, i.e. they have the form we
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described.
Now note that one cannot move from a position described above to

another such position. In every such position the sum of the remainders
left by the numers of stones in the piles when divided by n(n − 1) lies
between n and n(n − 1), thus it cannot be obtained by dividing a pile in
another such position.

Finally, we see that if a position is not of that type, at least in one of
its piles the number of stones is congruent modn(n− 1) to some number
between n and n(n − 1), and therefore can be presented as a sum of n
numbers leaving upon division by n(n−1) remainders between 1 and n−1.
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