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Senior league
5. Prove that a quadratic trinomial x2 + ax + b (a, b ∈ R) cannot attain at ten

consecutive integral points values equal to powers of 2 with non-negative integral ex-
ponent.

(F. Petrov)

6. Kostya marked the points A(0, 1), B(1, 0), C(0, 0) in the coordinate plane. On
the legs of the triangle ABC he marked the points with coordinates (1

2
, 0), (1

3
, 0), . . . ,

( 1
n+1

, 0) and (0, 1
2
), (0, 1

3
), . . . , (0, 1

n+1
). Then Kostya joined each pair of marked

points with a segment. Sasha drew a 1 × n rectangle and joined with a segment each
pair of integer points on its border. As a result both the triangle and the rectangle are
divided into polygons by the segments drawn. Who has the greater number of polygons:
Sasha or Kostya?

(M. Alekseyev)

7. A 1×5n rectangle is partitioned into tiles, each of the tile being either a separate
1×1 square or a broken domino consisting of two such squares separated by four squares
(not belonging to the domino). Prove that the number of such partitions is a perfect
fifth power.

(K. Kokhas)

8. In an acute triangle ABC the points Cm, Am, Bm are the midpoints of AB, BC,
CA respectively. Inside the triangle ABC a point P is chosen so that ∠PCB = ∠BmBC
and ∠PAB = ∠ABBm. A line passing through P and perpendicular to AC meets the
median BBm at E. Prove that E lies on the circumcircle of the triangle AmBmCm.

(K. Ivanov)

Junior League
5. Each row of a 24× 8 table contains some permutation of the numbers 1, 2, . . . ,

8. In each column the numbers are multiplied. What is the minimum possible sum of
all the products?

(C. Wu)

6. The city of Neverreturn has N bus stops numbered 1, 2, . . . , N . Each bus route
is one-way and has only two stops, the beginning and the end. The route network is
such that departing from any stop one cannot return to it using city buses.

When the mayor notices a route going from a stop with a greater number to a stop
with a lesser number, he orders to exchange the number plates of its beginning and its
end. Can the plate changing go on infinitely?

(K. Ivanov)

7. M is the midpoint of the side AB in an equilateral triangle ABC. The point
D on the side BC is such that BD : DC = 3 : 1. On the line passing through C and
parallel to MD there is a point T inside the triangle ABC such that ∠CTA = 150◦.
Find the angle MTD.

(K. Ivanov)

8. Eight poles stand along the road. A sparrow starts at the first pole and once in
a minute flies to a neighbouring pole. Let a(n) be the number of ways to reach the last
pole in 2n+ 1 flights (we assume a(m) = 0 for m < 3). Prove that for all n ⩾ 4

a(n)− 7a(n− 1) + 15a(n− 2)− 10a(n− 3) + a(n− 4) = 0.

(T. Amdeberhan, F. Petrov)
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SOLUTIONS

Senior League
5. It is easy to check that each monic quadratic trinomial f(x) satisfies the relation

f(k + 3)− f(k + 2)− f(k + 1) + f(k) = 4.

Suppose there exist such ten consecutive integers. Then at least five of them form a
segment where the trinomial is monotonous. Let the maximum value of the trinomial in
these four points is 2n (n has to be at least 4). Supposing, without loss of generality, that
the trinomial is increasing on the above segment and the maximim value 2n = f(k+3),
we obtain

4 = f(k+ 3)− f(k+ 2)− f(k+ 1)+ f(k) ⩾ 2n − 2n−1 − 2n−2 + 1 ⩾ 16− 8− 4 + 1 = 5,

a contradiction.

6. The reader will easily agree that replacing an 1 × n rectangle by a
√
2 × n

rectangle will not change the answer (provided the sides of length n are still divided
into n equal segments). To make matters worse, we position the rectangle vertically,
more or less like the Monolith of “Space Odyssey” fame. Naturally this position requires
three coordinates to describe, so the vertices of the rectangle will be at (1, 0, 0), (0, 1, 0),
(1, 0, n), and (0, 1, n). The marked points will have the coordinates (1, 0, k) and (0, 1, k)
for 0 ≥ k ≥ n.

For better view we establish ourselves at (0, 0,−1) and project the marked points
onto the plane z = 0. The images of points (1, 0, k) and (0, 1, k) under this projection
will be ( 1

k+1
, 0, 0) and (0, 1

k+1
, 0). In other words, what we see in the plane z = 0 is the

original triangle ABC with its marked points except one small triangle in the corner.
Thus our projection provides a bijection between all the parts of the rectangle and

all but one parts of the triangle. This, of course, means that the number of parts in
the triangle was greater by 1.

7. For each r = 1, 2, 3, 4, 5 let us consider the unit squares on the positions r,
r + 5, r + 10, . . . , r + 5(n − 1). Forming five 1 × n rectangles of these squares we
see that each rectangle is partitioned into original tiles (with the only difference that
we have unbroken the broken dominoes). Conversely, from any five partitions of 1× n
rectangles into unit squares and dominoes the original partition can be reconstructed.
Thus the number in question is the fifth degree of the number of ways to partition a
1× n rectangle into unit squares and dominoes.

8. Since the triangle ABC is acute, its median BBm is
greater than ABm. This enables us to mark on the segment
BBm the point Q such that
1

2
AC = QBm =

AB2
m

BBm

=
ABm

BBm

· ABm < 1 · ABm < BBm.

The equality QBm =
AB2

m

BBm

is equivalent to
QBm

ABm

=
ABm

BBm
and thus implies the similarity of the triangles QABm and
ABBm. In particular,
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∠QABm = ∠ABBm. (∗)

Similarly ∠QCBm = ∠CBBm. (The reader can try to
prove these relations finding the power of a carefully cho-
sen point.)

Let ∠CBBm = α, ∠ABBm = β. Then ∠PAB = β
and (in view of (∗)) ∠QAC = β. Similarly, ∠PCB =
α, ∠QCA = α. It means that Q and P are isogonal
conjugates, ∠ABP = α, ∠PBC = β.

The triangles ABP and BCP have equal angles
∠PAB = ∠PBC = β and ∠PBA = ∠PCB = α. there-
fore they are similar and ∠ACmP = ∠BAmP because of
this similarity. It follows that the quadrilateralBAmPCm

is cyclic.
Let E ′ be the midpoint of BQ. Then E ′Cm and E ′Am

are midlines in the triangles ABQ и CBQ, E ′Cm ∥ AP
and consequently

∠CmE
′Am = ∠AQC = 180◦ − α− β.

Since BAmBmCm is a parallelogram, ∠AmBmCm =
∠AmBCm = α + β и BBmCm = β, BBmAm = α.

We see that

∠CmE
′Am + ∠CmBmAm =

= 180◦ − α− β + α + β = 180◦,

which means that E ′AmBmCm is cyclic.
The triangles BCmAm and BmAmCm are equal, and

so are their circumcircles. In these equal circles the
chords E ′Cm and PCm subtend angles equal to β, while
the chords E ′Am and PAm subtend angles equal to α,
therefore E ′Cm = PCm and E ′Am = PAm. Then
CmAm is the perpendicular bisector of PE ′, that is,
E ′P ⊥ CmAm ∥ AC, therefore E ′ coincides with the
original point E, q.e.d.

Junior League

5. О т в е т: 8 · (8!)3. Let P1, . . . , P8 be the products of numbers in the columns.
It follows from AM–GM inequality that

P1 + P2 + . . .+ P8 ⩾
(1)

8 8
√
P1P2 . . . P8 =

(2)
8 8
√

(8!)24 = 8 · (8!)3.

Here the equality (2) holds because P1P2 . . . P8 is the product of all the numbers in the
table. The only case of equality in the AM–GM inequality is when all the variables are
equal. Therefore (1) becomes an equality if P1 = P2 = . . . = P8, and since this case is
easily attained by putting in the table thrice any permutation and all its cyclic shifts,
this very case gives the minimum sum of the products.
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6. We may think that when plates are exchanged, the plate with the greater number
is transported to its new destination by bus. It follows that the plate with number N
will be exchanged a finite number of times. Indeed, if it makes infinitely many moves,
at some moment it must visit a stop it has already visited, a contradiction.

When the plate number N ceases moving we can apply the same argument to the
plate number N − 1 and so on, down to the plate number 1. Thus at some moment all
the plates will stop their movement, ending the whole process.

7. О т в е т: 120◦.
Let R be the midpoint of BC. Instead of T we consider

the point R′ symmetrical to R across DM . We will prove
that CR′ ∥ DM and ∠AR′C = 150◦, and finally that there
is only one point in the triangle satisfying these conditions.
It will follow that R′ = T .

0. Finding the answer. The equations RB = MB =
AB/2 and ∠RBM = ∠CBA = 60◦ mean that the triangle
RBM — равносторонний. Therefore ∠MRB = 60◦ and
∠DRM = 180◦ − ∠MRB = 120◦. Because of symmetry
the desired angle ∠DR′M = ∠DRM = 120◦.

1. Proving CR′ ∥ DM . Since R and R′ are symmetric across DM , DM ⊥ R′R and
R′D = RD. This means that the median R′D in the triangle CRR′ is equal to half the
side CR, thus ∠CR′R = 90◦, i. e. CR′ ⊥ R′R ⊥ DM .

2. Proving ∠AR′C = 150◦. By symmetry MR′ = MR = AB/2 = AM , i. e.
A, R′, R, B lie on the circle with diameter AB, hence ∠AR′R = 180◦ − ∠ABR =
= 180◦ − 60◦ = 120◦. As we already noted, ∠CR′R =
90◦. Therefore the equality ∠AR′R + ∠RR′C +
∠CR′A = 360◦ implies ∠AR′C = 360◦ − 120◦ − 90◦ =
150◦.

3. Proving R′ = T . Suppose the contrary. Then
the line passing through C and parallel to DM con-
tains two different points R′ and T such that ∠ATC =
∠AR′C = 150◦. Let X be one of these points
that is nearer C, and Y the other one. The an-
gle AXC is exterior for the triangle AXY , therefore

150◦ = ∠AXC = ∠AYX + ∠XAY > ∠AYX = ∠AY C = 150◦,

a contradiction.

8. We introduce a little more detailed notation. Let bk(n) be the number of ways
to reach the k-th pole in n flights. Then obviously bk(n) = 0 if k and n have the same
parity, and

bk(n) = bk−1(n− 1) + bk+1(n− 1) for 1 < k < 8,

b1(n) = b2(n− 1),

b8(n) = b7(n− 1).

(∗)
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Clearly a(n) = b8(2n+ 1). Then

a(n)− 7a(n− 1) = b8(2n+ 1)− 7b8(2n− 1) =

= b7(2n)− 7b8(2n− 1) =

=
(
b6(2n− 1) + b8(2n− 1)

)
− 7b8(2n− 1) =

= b6(2n− 1)− 6b8(2n− 1) =

= b5(2n− 2)− 5b7(2n− 2).

Let us extend our attention to a(n − 2) and further reduce the number of flights by
unscrupulous use of (∗):

a(n)− 7a(n− 1) + 15a(n− 2) = b5(2n− 2)− 5b7(2n− 2) + 15b8(2n− 3) =

= b4(2n− 3)− 4b6(2n− 3) + 10b8(2n− 3) =

= b3(2n− 4)− 3b5(2n− 4) + 6b8(2n− 4).

And on, and on in the same vein:

a(n)− 7a(n− 1) + 15a(n− 2)− 10a(n− 3) =

= b3(2n− 4)− 3b5(2n− 4) + 6b8(2n− 4)− 10b8(2n− 5) =

= b2(2n− 5)− 2b4(2n− 5) + 3b6(2n− 5)− 4b8(2n− 5) =

= b1(2n− 6)− b3(2n− 6) + b5(2n− 6)− b7(2n− 6).

Turning finally to the case of 2n− 7 flights, we get

a(n)− 7a(n− 1) + 15a(n− 2)− 10a(n− 3) + a(n− 4) =

= b1(2n− 6)− b3(2n− 6) + b5(2n− 6)− b7(2n− 6)− b8(2n− 7) = 0.

7


