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Senior league

1. Some of 100 towns of a kingdom are connected by roads. It is known that for
each two towns A and B connected by a road there is a town C which is not connected
by a road with at least one of the towns A and B. Determine the maximum possible
number of roads in the kingdom.

(P. Qiaoa, X. Zhan )

2. Two circles ω1 and ω2 of different radii touch externally at L. A line touches ω1

at A and ω2 at B (the points A and B are different from L). A point X is chosen in
the plane. Y and Z are the second points of intersection of the lines XA and XB with
ω1 and ω2 respectively. Prove that all X such that AB ∥ Y Z belong to one circle.

(K. Ivanov)

3. Is there a colouring of all positive integers in three colours so that for each
positive integer the numbers of its divisors of any two colours differ at most by 2?

(A. Golovanov)

4. For every positive a1, a2, . . ., a6 prove the inequality

4

√
a1

a2 + a3 + a4
+ 4

√
a2

a3 + a4 + a5
+ . . .+ 4

√
a6

a1 + a2 + a3
⩾ 2.

(A. Khrabrov)

Junior League

1. Arnim and Brentano have a little vase with 1500 candies on the table and a
huge sack with spare candies under the table. They play a game taking turns, Arnim
begins. At each move a player can either eat 7 candies or take 6 candies from under the
table and add them to the vase. A player cannot go under the table in two consecutive
moves. A player is declared the winner if he leaves the vase empty. In any other case, if
a player cannot make a move in his turn, the game is declared a tie. Is there a winning
strategy for one of the players?

(A. Golovanov)

2. Given are integers a, b, c and an odd prime p. Prove that p divides x2 + y2 +
ax+ by + c for some integers x and y.

(A. Golovanov)

3. Bisectors of a right triangle ABC with right angle B meet at point I. The
perpendicular to IC drawn from B meets the line IA at D; the perpendicular to IA
drawn from B meets the line IC at E. Prove that the circumcentre of the triangle IDE
lies on the line AC.

(A. Kuznetsov)

4. Several good points, several bad points and several segments are drawn in the
plane. Each segment connects a good point and a bad one; at most 100 segments begin
at each point. We have paint of 200 colours. One half of each segment is painted with
one of these colours, and the other half with another one. Is it always possible to do it
so that every two segments with common end are painted with four different colours?

(M. Qi, X. Zhang)
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SOLUTIONS

Senior League

1. A n s w e r: 98 · 100/2 roads. This number of roads is obtained if the towns form
50 pairs and two towns are connected by a road if and only if they do not form a pair:
thus we get 99 · 100/2− 50 = 98 · 100/2 roads.

There cannot be two towns with 99 roads going from each (if they are A and B we
immediately have a contradiction). If there is a town connected to all the others, the
total number of roads starting in all the towns does not exceed 99+99 ·98. However, in
this number each road is counted twice, therefore it must be even and thus not greater
than 98+99 ·98 = 98 ·100, while the number of roads does not exceed half that number.

Finally, if there is no town with 99 roads, the number of roads in each town does
not exceed 98, and the number of all roads does not exceed 98 · 100/2.

2. Let O1 and O2 be the centres of ω1 and ω2, r and R their respective radii. Since
AB ∥ Y Z, the points Z and Y lie at the same distance from AB. We denote this
distance by h.

Let K, D, N , J be the feet of perpendiculars dropped from Y , O1, O2, J to the lines
AB, AY , BZ, AB, respectively. Obviously N is the midpoint of BZ, and JZ = h. If
∠Y AK = α, ∠ZBJ = β, then ∠ZBO2 = 90◦−β, ∠BO2N = 90◦− (90◦−β) = β. Now

we see that
JZ

BZ
=

h

BZ
= sin β ,

BN

BO2

=
BZ/2

R
= sin β, hence sin2 β =

h

2R
. There are

different positions of X, and the angle XBA is not always equal to β (the figure shows
two possible positions of X, denoted by X1 and X2. It may be seen that ∠X1BA = β
and ∠X2BA ̸= β).
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This difficulty can be circumvented: both ∠XBA and ∠JBZ = β are formed by
the lines XB and XA, therefore ∠XBA can be equal either β or 180◦ − β. In any

case sin∠XBA = sin β. Thus we have sin2∠XBA =
h

2R
. Similarly, sin2∠XAB =

h

2r
.

Applying the law of sines to the triangle XAB, we see that
XA

XB
=

sin∠XBA

sin∠XAB
=

√
r

R
,

independently of X.
It is well known that if two points A, B and a positive d ̸= 1 are fixed, the locus of

points X such that AX : BX = d is a circle called circle of Apollonius. Thus the point
X in question lies on the circle of Apollonius for the points A and B and the coefficient
d =

√
r
R
̸= 1.

Note: The centre of this circle is the intersection point of the common external
tangents to ω1 and ω2.

3. A n s w e r: yes. It is even possible to make the numbers in question differ at
most by 1.

Let us colour a positive integer with colour r (r = 0, 1, 2) if the number of prime
factors in the prime factorization of n leaves the remainder r upon division by 3. In
other words,

n = pα1
1 pα2

2 . . . pαk
k

is coloured with the colour α1 + α2 + . . .+ αk mod 3.
We will check now that this colouring is valid.

F i r s t s o l u t i o n. Let an,0, an,1 и an,2 be the numbers of divisors of n such
that their number of prime factors leaves the remainder 0, 1, and 2 respectively upon
division by 3 (i. e. the numbers of divisors of colours 0, 1, and 2). We will prove that
the difference of any two of these numbers does not exceed 1. The proof is by induction
on the number of different prime divisors of n. If the number of prime divisors is 0,
then n = 1, an,0 = 1, an,1 = 0, an,2 = 0. Suppose the statement is true for some n, and
let m = npk, where p is a prime not dividing n.

All divisors of m form k + 1 groups G0, . . . , Gk so that for each s, 0 ≤ s ≤ k, the
group Gs is contains the divisors divisible by ps and not divisible by ps+1. If s ≡ 0
(mod 3), the groups Gs contains an,0 divisors of colour 0, an,1 divisors of colour 1 and
an,2 of colour 2; if s ≡ 1 (mod 3), then Gs contains an,2, an,0, an,1 divisors of colours
0, 1, 2 respectively; if s ≡ 2 (mod 3), an,1, an,2 и an,0 divisors of these colours. Clearly
a union of the form Gk ∪ Gk+1 ∪ Gk+2 contains equal number of divisors of all three
colours. If s ≡ 2 (mod 3), all the groups can be split into such triplets, and m has
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equal number of divisors of all three colours. If s ≡ 0 (mod 3), only one group, namely
Gs, remains outside such triplets, and the differences between numbers of divisors of
the three colours are equal to those of an,0, an,1, an,2. Lastly, if s ≡ 1 (mod 3), the two
group outside the triplets are Gs−1 and Gs; they contain an,1+ an,2 divisors of colour 0,
an,2 + an,0 divisors of colour 1 and an,0 + an,1 divisors of colour 2. The differences of
these numbers also equal to those of an,0, an,1, an,2, that is, do not exceed 1 as desired.

S e c o n d s o l u t i o n. Let ε be a (not necessarily real) cubic root of 1. If a
positive integer n is a product of k primes we define f(k) = εk. The function f is
multiplicative (that is, f(ab) = f(a)f(b) when a and b are coprime). It is known then
that its summatory function F (n) =

∑
d|n

f(d) is also multiplicative. This function by
definition equals

F (n) = a0 + a1ε+ a2ε
2, (∗)

where ar is the number of divisors of n of colour r. On the other hand, F (n) equals
the product of the numbers of the form F (ps), where ps is the highest power of a
prime p dividing n. If ε ̸= 1, the number F (ps) = 1 + ε + . . . + εs does not exceed 1
in absolute value (in fact, F (ps) always equals 0, 1, or 1 + ε = −ε2). Substituting for
ε in (∗) all cubic roots of 1, i. e, 1, ρ = −1+

√
3i

2
и ρ2, we see that a0 + a1 + a2 = d(n),

|a0 + a1ρ+ a2ρ
2| ⩽ 1, |a0 + a1ρ

2 + a2ρ| ⩽ 1. Multiplying these formulas by cubic roots
of unity and adding we get the desired result.

4. L e m m a. 4

√
x2

y2 + z2 + t2
⩾

2x

x+ y + z + t
for positive x, y, z, t.

P r o o f

x+ y + x+ t

2x
=

1

2

(
1 +

y + z + t

x

)
⩾

√
y + z + t

x
=

4

√
(y + z + t)2

x2
⩾

4

√
y2 + z2 + t2

x2
.

Inverting both sides we get the desired result.

Let x1 =
√
a1, x2 =

√
a2 and so on, S = x1 + x2 + x3 + x4 + x5 + x6. Applying the

lemma to each term of the sum and adding the resulting inequalities, we get

4

√
x2
1

x2
2 + x2

3 + x2
4

+ 4

√
x2
2

x2
3 + x2

4 + x2
5

+ . . .+ 4

√
x2
6

x2
1 + x2

2 + x2
3

⩾

⩾

(
2x1

x1 + x2 + x3 + x4

+
2x2

x3 + x4 + x5 + x6

+ . . .+
2x6

x6 + x1 + x2 + x3

)
⩾

⩾ 2
(x1

S
+

x2

S
+ . . .+

x6

S

)
= 2,

as desired.

Junior League
1. Brentano has a winning strategy.
Suppose the vase contains 15k candies before Arnim’s move (k is a positive integer).

We will see that Brentano can leave 15(k − 1) candies after two moves of each player,
and the vase does not become empty in the process.

If Arnim adds 6 candies by his first move, next times he has to eat 7. Then Brentano
should eat 7 candies twice, thus leaving 15k − 15 candies. If Arnim eats 7 candies by
his first move, Brentano also eats 7, leaving 15k − 14 > 0 candies. If after that Arnim
can eat 7 candies more (leaving 15k− 21 ̸= 0 candies in the vase), Brentano adds 6 and
gets 15k− 15. Otherwise Arnim adds 6, then Brentano eats 7 and gets the same result.

Repeating this 100 times Brentano wins.
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2. Evaluating f(x) = x2+ ax+ c for x = 0, 1, . . . , p− 1 we get at least p+1
2

different
remainders upon division by p. Indeed, if x1 and x2 are two distinct integers between 0
and p−1, and p divides f(x1)−f(x2) = x2

1+ax1+c−(x2
2+ax2+c) = (x1−x2)(x1+x2+a),

then p also divides x1+x2+ a, that is, for each x1 between 0 and p− 1 there is at most
one x2 on the same segment such that f(x2) and f(x1) leave the same remainder upon
division by p.

Similar argument shows that the values of the polynomial g(y) = −y2 − by leave
at least p+1

2
different remainders upon division by p. We have constructed two sets of

remainders upon division by p, each one containing more than half of all remainders;
these sets must have a common element. Therefore p divides f(x) − g(y) for some
integers x and y, q.e.d.

3. Let K and J be te feet of perpendiculars dropped from B to the lines IC и IA
respectively, H and G the respective points where these perpendiculars meet AC. We
denote by F the midpoint of HG.

Let ∠GAI = ∠IAB = α and ∠BCI = ∠ICA = β. The sum of angles in the triangle
ABC is 90◦ + 2α + 2β = 180◦, hence α + β = 45◦. Applying the same argument to
the triangle ABJ we get ∠ABJ = 90◦ − α and therefore ∠GBC = ∠ABC −∠ABJ =
90◦ − (90◦ − α) = α. Similarly ∠ABH = β. Thus ∠HBG = ∠ABC − (∠ABH +
∠GBC) = 90◦ − 45◦ = 45◦.

Clearly AJ is both a bisector and an altitude in the triangle ABG. It follows that
it is also the perpendicular bisector of BG. Similarly, KC is the perpendicular bisector
of BH. Thus I is the common point of perpendicular bisectors to the sides of the
triangle HBG. Then the line IF is a perpendicular bisector in the triangle HIG, and
therefore its median and altitude, so the triangle HIG is isosceles.

Since I is the circumcentre of HBG, ∠HIG = 2∠HBG = 90◦, i. e. HIG is not
only isosceles but also right, and its angles are 45◦, 45◦, 90◦. IF is the median of
a right triangle, therefore HF = IF = GF , i. e. H, I, G belong to a circle with
centre F and radius FH. To see that D and E belong to this circle, we look at the
angles of the triangle BJD, where we have ∠BDJ = 180◦ − 90◦ − 45◦ = 45◦, that is,
∠HDI = 180◦ − 45◦ = 135◦. Angle ∠IGH = 45◦ is already found. Thus we see that
∠HDI +∠HGI = 180◦, that is, the quadrilateral IGHD is cyclic. In the same way it
is proved that E belongs to our circle.
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Note. There are other solutions, partly coinciding with this one. For instance, one
can note that the quadrilateral AHIB is cyclic, or that the common point of DG and
AB belongs to the circumcircle of the triangle HBG.

4. A n s w e r: yes.
We define the bipartite graph T so that its vertices and edges correspond to the

(good and bad) points and segments in the problem. We denote its parts by V1 and
V2. We need also the graph T ′, a copy of T . For each vertex A of T the corresponding
vertex of T ′ is denoted by A′, the parts of T ′ are V ′

1 and V ′
2 . The union of T and T ′ is

a bipartite graph; we will consider the union of V1 and V ′
2 as one part and the union

of V2 and V ′
1 as another part of this graph. If a vertex A in T has degree d < 100, the

vertex A′ lies in the other part and has the same degree. We can add 100 − d edges
between A and A′ and repeat this procedure until we get a bipartite graph Q such that
T is its subgraph and all the vertices of Q have degree 100.

The graph Q is regular (that is, all its vertices have the same degree). Thus we have
constructed a regular graph. This graph can have multiple edges; the reader is advised
to check that our argument is not affected by it.

We need the following well-known Hall’s theorem. If a bipartite graph G satisfies
Hall’s condition, then G contains a set R of edges such that each vertex of G is the
end of exactly one edge in R. Such a set is called a perfect matching in G. The Hall’s
condition requires that for each k and each k vertices belonging to the same part of G,
the number of vertices adjacent to them is at least k.

Let us check the Hall’s condition for the graph Q. If for k vertices in one part there
are only ℓ < k vertices adjacent to them, the edges between these vertices have exactly
100k ends in one part and at most 100ℓ < 100k vertices in another part, a contradiction.

Thus Q admits a perfect matching. We can colour all the edges of this matching
with the first colour and remove them from Q. A regular graph remains with vertices
of degree 99. In this graph we can again find a perfect matching, colour its edges with
the second colour and remove them. Repeating this operation 100 times (we like simple
monotonous work) we colour all the edges of Q with 100 colours so that all the edges
beginning in each vertex have different colours. Such colouring is called edge colouring
of Q.

Since T is a subgraph of Q, it also admits an edge colouring with 100 colours.
It remains to split each colour s into two hues s1 and s2 and colour two halves of

each edge of colour s with different hues s1 and s2.
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