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Senior league

5. Sines of three acute angles form an arithmetic progression, while
the cosines of these angles form a geometric progression. Prove that all
three angles are equal.

(S. Berlov)

6. In a n × n table (n > 1) k unit squares are marked. One wants
to rearrange rows and columns so that all the marked unit squares are
above the main diagonal or on it. For what maximum k is it always
possible?

(M. Antipov)

7. An acute triangle ABC is given, AC 6= BC. The altitudes drawn
from A and B meet at H and intersect the external bisector of the angle
C at Y and X respectively. The external bisector of the angle AHB

meets the segments AX and BY at P and Q respectively. If PX = QY ,
prove that AP + BQ > 2CH.

(E. Lopatin, D. Shiryaev)

8. In a sequence Pn of quadratic trinomials each trinomial, starting
with the third, is the sum of the two preceding trinomials. The first
two trinomials do not have common roots. Is it possible that Pn has an
integral root for each n?

(A. Golovanov)

Junior League

5. In a 100× 100 table 110 unit squares are marked. Is it always pos-
sible to rearrange rows and columns so that all the marked unit squares
are above the main diagonal or on it?

(M. Antipov)

6. Given are real y > 1 and positive integer n 6 y50 such that all
prime divisors of n do not exceed y. Prove that n is a product of 99
positive integer factors (not necessarily primes) not exceeding y.

(G. Martin, A. Parvardi )

7. A pile contains 20212021 stones. In a move any pile can be divided
into two piles so that the numbers of stones in them differ by a power
of 2 with non-negative integer exponent. After some move it turned out
that the number of stones in each pile is a power of 2 with non-negative
integer exponent. Prove that the number of moves performed was even.

(M. Antipov)

8. See problem 7 of Senior league.
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SOLUTIONS

Senior League

5. First solution. Assume that angles α ≤ β ≤ γ satisfy the
condition of the problem. It is clear that if two of the angles are equal
then the arithmetic progression is constant and then all three angles are
equal. So we may assume that both inequalities are strict. The sine
increases and the cosine decreases on the segment [0◦, 90◦]. Therefore
sin β and cos β are middle terms in the respective progressions. Rewrite
the condition as follows:

2 sin β = sinα + sin γ, cos2 β = cosα · cos γ.

Squaring the first equality and adding the second multiplied by 4, we get

4 = 4 sin2 β + 4 cos2 β = sin2 α + 2 sinα sin γ + sin2 γ + 4 cosα cos γ 6

6 2 sin2 α + 2 sin2 γ + 2 cos2 α + 2 cos2 γ = 4.

Then the central inequality should be in fact an equality, which is possible
only when sinα = sin γ, a contradiction.

Second solut ion. Let f(x) = ln cos arcsin x, x ∈ [0, 1). Assume
that the angles are different and their sines x1, x2, x3 form an arithmetic
progression. Then the numbers yi = f(xi) in the same order also form an
arithmetic progression (because f is monotone). Hence points (x1, y1),
(x2, y2), (x3, y3) of the Cartesian plane belong to the same line, and these
points belong also to the graph of function y = f(x). Therefore some line
intersects the graph of f(x) at three points. This is impossible because
f(x) is concave on the segment [0, 1). Indeed, f(x) = 1

2 ln(1−x2), f ′(x) =
x

x2−1 , f
′′(x) = − x2+1

(x2−1)2 < 0.

6. The answer is n+ 1.
We will prove by induction on n that if k 6 n + 1 unit squares are

marked, one can always rearrange rows and columns so that all the
marked squares are not below the main diagonal. The base n = 2 is
trivial. To prove the inductive step, let us choose a row R containing at
least two marked squares (if there is no such row, then k ≤ n, and we
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choose any row containing at least one marked square). hen we choose
a column C containing no marked squares except possibly the square
at the intersection with R. Such a column exist, otherwise there are at
least n marked squares outside R, contrary to its choice. Move R so that
it becomes the topmost row of the table and C to become the leftmost
column. To the remaining part of the table we can apply the inductive
hypothesis.

There is an example of k = n+2 marked squares which are impossible
to rearrange in the desired manner. Let four marked squares form 2× 2
square in the upper left corner of the table, and all the remaining squares
of the main diagonal are also marked. We will prove the impossibility
by induction on n. The base case, n = 2, is obvious. Suppose there is
a desired rearrangement for some n > 2. Choose a row containing one
marked square; the column containing this square does not contain other
marked squares. If this square is not on the main diagonal, that is, to
the right of it, the column containing it can be moved left so that the
marked square gets on the main diagonal; all the other columns either
remain on their places or move right, and the condition is not violated.
When the marked square is on the main diagonal, it can be removed to
apply the inductive hypothesis.

7. We begin by reminding the reader one definition and one lemma.
Two lines passing through the vertex of an angle are called isogonal when
they are symmetric with respect to the bisector of this angle.

A B

C

H

S

X Y

L emm a (Isogonal Line Lemma). Let lines CA and
CB be isogonal with respect to angle XCY , lines XA

and Y B intersect at point S, and lines XB and Y A
intersect at point H. Then lines CS and CH are also
isogonal.

Let us apply this lemma to the problem. Let O be the circumcentre
of ABC. Then ∠ACO = ∠BCH, i. e. lines CO and CH are symmetric
with respect to the bisector of angle ACB, and therefore they are isogonal
with respect to angle XCY .

We will prove that lines AX, BY , CO have common point (possibly
at infinity, in which case the three lines are parallel) regardless of the
condition PX = QY . Indeed, CA and CB are isogonal with respect to
angle XCY . Then by Isogonal Line Lemma, CH and the line connecting
C with the intersection ofXA and Y B are also isogonal, and we are done.

Now we prove that lines AX, BY , CO are parallel. By the previous
claim it suffces to check that AX and BY are parallel. Let ∠ACB = γ.
Then ∠Y CB = ∠XCA = 90◦ − γ/2, ∠AHB = 180◦ − γ, and ∠CY H =
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∠CXH = ∠Y HQ = γ/2. Therefore, Y X ‖ PQ. Since Y Q = XP ,
Y XPQ is a parallelogram or an isosceles trapezoid.

A

B

C

H

O′

O

X Y

P Q

Assume that Y XPQ is an isosceles
trapezoid. Then ∠QYX = ∠Y XP ,
and, since ∠CY H = ∠CXH, we have
∠BY A = ∠BXA. It follows that
the quadrilateral Y XAB is cyclic, and
Y B = XA (the arcs subtending these
chords are equal). Therefore Y XAB

is an isosceles trapezoid (or rectangle)
and Y X ‖ AB. But this means that
the external bisector of angle C in tri-
angle ABC is parallel to its base AB.
This is possible only when AC = BC,
contradiction.

Thus Y XPQ is a parallelogram, lines AX and BY are parallel (hence
they are parallel to CO). Let O′ be the intersection point of PQ and
CO. PXCO′ is a parallelogram, PXCH is an isosceles trapezoid (by the
same isogonality with respect to angle XCY ). Thus PX = QY = CH
and ∠CY H = ∠HXC = ∠XCP . Therefore CP ‖ AY and similarly
CQ ‖ BX, thus

AP +BQ

CH
=

AP

PX
+

BQ

QY
=

CY

CX
+

CX

CY
> 2.

8. It is easily proved by induction that

Pn+2(x) = FnP1(x) + Fn+1P2(x), (∗)

for n > 0, where Fn is n-th Fibonacci number. Let xn be an integer root
of Pn. Setting x = xn+2 in (∗) we have

FnP1(xn+2) + Fn+1P2(xn+2) = 0.

Since P1 and P2 have no common roots, it follows immediately that xn+2

is not a root of either P1 or P2. Then

−Fn+1

Fn

=
P1(xn+2)

P2(xn+2)
. (∗∗)

It is well known that (Fn, Fn+1) = 1, that is, fractions Fn+1

Fn

are irre-
ducible and, since Fn < Fn+1 for n > 1, distinct. It follows that all xn
are distinct, and (since they are integers) |xn| → +∞ when n → +∞. It

is at least as well, or even a little better, known that lim
n→+∞

Fn+1

Fn

= 1+
√
5

2 .
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Then, taking the limit in (∗∗) as n tends to infinity, we see that the ratio

of the leading coefficient of P1 and the leading coefficient of P2 is −1+
√
5

2 .
We will prove that in fact that ratio must be rational. Without loss

of generality assume that the leading coefficient of P1 is 1 (dividing all
the coefficients of P1 and P2 by the same number we do not change the
roots of Pn). We will call a function quadratic rational if it is a ratio of
two quadratic trinomials without common roots; clearly we can assume
that the leading coefficient of the trinomial in the numerator is 1.

L e mm a. Let qi, ri, 1 6 i 6 5 be real numbers, and qi pairwise dis-
tinct. Then there is at most one quadratic rational function f satisfying
f(qi) = ri, i = 1, . . . , 5.

Indeed, if u1

v1
and u2

v2
are two such functions, the numerator of their

difference, i.e. the polynomial u1v2 − u2v1, has five roots. It remains to
note that the degree of this (non-zero) polynomial does ot exceed 4.

Back to the problem, note that the quadratic rational function P1(x)/P2(x)
has rational values −Fk+1/Fk at five integer points xk+2, k = 1, 2, 3, 4, 5
(in fact, there are infinitely many such points, but five is enough for us).
It follows from the Lemma that such function is unique if it exists at all.
On the other hand, five conditions FkP1(xk+2) + Fk+1P2(xk+2) = 0 are
a system of five linear equations with five variables, namely, the coeffi-
cients of P1, P2. We have seen that this system admits a unique solution,
which must be therefore rational, since the coefficients are rational and
the variables can be expressed through them by elimination (or Cramer’s
rule).

Junior League

5. The answer is no.
It is impossible to rearrange rows and columns if the set of marked

squares contains 102 squares described in the example for problem 6 of
Senior league (n = 100, k = 102).

6. Let p1 ≥ p2 ≥ . . . ≥ pr be the prime divisors of n. We use greedy
algorithm to distribute these primes in 99 piles: every next ps goes to
any pile with minimum product of numbers in it. We denote by bi the
product of primes already put in the i-th pile (in the beginning bi = 1
for all i. If a prime ps cannot be added to any pile in its turn, we have
bi > y/ps for all i, and

(y/ps)
99ps < b1b2 . . . b99ps ≤ n ≤ y50.

it follows from this inequality that y49 < p98s , that is, ps >
√
y. But

bi ≥ ps for all i (every pile already contains at least one prime not less
than ps), and n ≥ b1b2 . . . b99ps ≥ p100s > y50, a contradiction.

7



7. For brevity’s sake we call the remainder left by the number of stones
in a pile upon division by 3 merely the remainder of a pile (probably
reconstructing the history of this notion). Consider the remainders of
two new piles obtained by splitting a pile in two. Since 3 cannot divide
a power of 2, the new piles have different remainders. Then from a pile
with remainder 0 we can obtain only piles with remainders 1 and 2; from
a pile with remainder 1 we can obtain only piles with remainders 0 and
1; finally, from a pile with remainder 2 we can obtain only piles with
remainders 0 and 2; It is immediately seen that each operation changes
the number of zero remainders by 1. Since there were no piles with
remainder 0 either in the beginning or in the end of the process, the
number of operations was even.

8. See Problem 7, Senior league.
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