Marking schemes

Senior league

Problem 1

Proving the inequality only for x in the range of $G: 2$ points
Proving the inequality only for odd degrees of $G: 2$ points
These points are not additive.
Problem 2
Proving the similarity of triangles $A E M, M C B, D M G$: 1 point
Problem 3
Use of any inequalities not turning to equalities for numbers in the problem: 0 points
Problem 4
Proving the that two sets contain equal number of elements: 1 point
Any algebraic reformulations of the problem: 0 points

Problem 5

Problem 6
Correct answer and an example for $n+2$ points (without proof): 1 point
Only an example (with proof) or only a proof of maximality: 3 points
Any attempts to give an example or prove maximality with a wrong answer: 0 points
Problem 7
$A X \| B Y$ or an equivalent claim is explicity stated and proved: 1 point
Proving that $Q B+A P \geq 2 P X: 1$ point
Proving that $X Y \| P Q: 0$ points
Problem 8
P_{n} is expressed through P_{1} and $P_{2}: 0$ points
The roots of all P_{n} are proved to be different: 1 point
The problem is reduced to the case when the ratio of leading coefficients of P_{1} and P_{2} is $-\frac{1+\sqrt{5}}{2}: 3$ points (not additive with the previous item)

1 point was deducted for minor logical and computational errors

Junior league

Problem 1
(1) Proving that $F(x) \neq G(x)$ for all x : 3 points
(2) Explicitly noted that $F(x)>G(x)$ for all x in the range of $G: 2$ points
(1) and (2) are not additive when continuity is not used.

Problem 2
Proving that $A B F$ is isosceles: 1 point
Problem 3
A: example
(A1) Correct example without description of ALL triplets satisfying the condition and without counting them: 0 points
(A2) Correct example with description of ALL triplets satisfying the condition, without counting them: 1 point
(A3) Correct example with description of ALL triplets satisfying the condition and counting them (not necessarily in a closed form): 2 points

These items are not additive.
B: maximality
(B1) Proving that a_{k} cannot divide both $a_{j}+a_{k}$ and $a_{j}+a_{i}$ for $i<k<j$: 0 points
(B2) Proving that a_{k} cannot divide $a_{i}+a_{j}$ for $i<j \leq k$: 1 point
(B3) Proving that for fixed $j>k$ the number a_{k} can divide at most one sum of the form $a_{i}+a_{j}, i \leq k$: 3 points

These items are not additive.
(C) In a complete solution 1 point was deducted if the answer was not given in a closed form.
(D) An answer (in any form) without proof: 0 points

Problem 4
Examples of arranging knights and liars in particular graphs: 0 points
Problem 5
A correct example without justification: 3 points
2 points are deducted when it is claimed without proof that the squares of the main diagonal must remain on the main diagonal

Problem 6
Special cases (n being product of a fixed number of primes and so on): 0 points
The case when n is a product of at most 99 primes: 0 points
The idea of uniting the smallest primes: 1 point
Problem 7
Claiming that the number of moves is always even when 3 divides the number of stones in a pile, and odd otherwise: 3 points

Problem 8
$A X \| B Y$ or an equivalent claim is explicity stated and proved: 1 point
Proving that $Q B+A P \geq 2 P X: 1$ point
Proving that $X Y \| P Q: 0$ points

