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Senior league
1. In a sequence a1, a2, . . . of real numbers the product a1a2 is negative, and to

define an for n > 2 one pair (i, j) is chosen among all the pairs (i, j), 1 6 i < j < n,
not chosen before, so that ai+aj has minimum absolute value, and then an is set equal
to ai + aj . Prove that |ai| < 1 for some i.

(A. Golovanov)

2. A trapezoid ABCD with BC ‖ AD is given. The points B′ and C ′ are symmet-
rical to B and C with respect to CD and AB, respectively. Prove that the midpoint of
the segment joining the circumcentres of ABC ′ and B′CD is equidistant from A and D.

(A. Kuznetsov)

3. The plan of a picture gallery is a chequered figure where each square is a room,
and every room can be reached from each other by moving to adjacent rooms. A
custodian in a room can watch all the rooms that can be reached from this room by
one move of a chess queen (without leaving the gallery). What minimum number of
custodians is sufficient to watch all the rooms in every gallery of n rooms (n > 2)?

(H. Alpert, É. Roldán)

4. A calculator can square a number or add 1 to it. It cannot add 1 two times in a
row. By several operations it transformed a number x into a number S > xn + 1 (x, n,
S are positive integers). Prove that S > xn + x− 1.

(M. Antipov)

Junior League
1. In a sequence a1, a2, . . . of integers the product a1a2 is negative, and to define

an for n > 2 one pair (i, j) is chosen among all the pairs (i, j), 1 6 i < j < n, not
chosen before, so that ai + aj has minimum absolute value, and then an is set equal to
ai + aj . Prove that |ai| < 1 for some i.

(A. Golovanov)

2. A triangle ABC with AB < AC is inscribed in a circle ω. Circles γ1 and γ2
touch the lines AB and AC, and their centres lie on the circumference of ω. Prove that
C lies on a common external tangent to γ1 and γ2.

(A. Kuznetsov)

3. The plan of a picture gallery is a chequered figure where each square is a room,
and every room can be reached from each other by moving to rooms adjacent by side.
A custodian in a room can watch all the rooms that can be reached from this room
by one move of a chess rook (without leaving the gallery). What minimum number of
custodians is sufficient to watch all the rooms in every gallery of n rooms (n > 1)?

(H. Alpert, É. Roldán)

4. A quota of diplomas at the All-Russian Olympiad should be strictly less than
45%. More than 20 students took part in the olympiad. After the olympiad the
Authorities declared the results low because the quota of diplomas was significantly
less than 45%. The Jury responded that the quota was already maximum possible on
this olympiad or any other olympiad with smaller number of participants. Then the
Authorities ordered to increase the number of participants for the next olympiad so
that the quota of diplomas became at least two times closer to 45%. Prove that the
number of participants should be at least doubled.

(A. Golovanov)
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SOLUTIONS

Senior League

1. Suppose the contrary: |ai| > 1 for all i. Let M be the minimum

positive term and m the maximum negative among the numbers a1, . . . ,
an. We shall prove that a number between m+1 and M − 1 will appear

in the sequence. Without loss of generality we may assume M +m > 0.
Since the sum M + m has not been chosen, |an+1| 6 |M + m|. If an+1

does not belong to the desired interval, it must lie between m + 1 and

−(M +m).
Can it be that all the subsequent terms lie in the segment ∆ =

[−(M +m), m+1]? If ai ∈ ∆ is obtained as a sum of two terms with dif-
ferent signs, the absolute values of these terms must be at least M . But

the number of such terms is finite, and new large terms cannot appear.
Therefore all the terms starting with some aj are sums of negative terms
and can be represented as sums of several numbers a1, . . . , aj . Choosing

integer s so that M +m < s|m+1|, we see that every such sum contains
less than s terms. However, the number of such sums is finite.

Thus the distance between the minimum negative term and the max-
imum positive term will eventually decrease at least by 1. But this, too,

cannot go on indefinitely, so the term with absolute value not exceeding
1 must appear in the sequence.

A

B

B′

C

C ′

D HBHC

OB

OC

2. Let OC and OB be the circumcen-
tres of ABC ′ and DCB′ respectively. It

is enough to prove that when the segment
OCOB is projected onto the line AD, the

midpoint of OCOB goes to the midpoint
of the segment AD. Let HC and HB be
the projections of OC and OB, respectively.

Thus the midpoint of OCOB is projected to the midpoint of HCHB, that
is, we should prove that the midpoints of HCHB and AD coincide.

Instead we shall prove that
#    –

AHC =
#        –

HBD.
Since these vectors are collinear, it suffices to check that they have the

same length and direction, i.e.,

AOC cos (∠OCAD) = DOB cos (∠OBDA).
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To find the left-hand side, we apply the Law of Sines to the triangle

ABC ′: AOC = AB
2 sin (∠AC′B) =

AB
2 sin (∠ACB) . Furthermore,

∠OCAD = ∠OCAB + ∠BAD = 90◦ − ∠AC ′B + ∠BAD =

= 90◦ − ∠ACB + ∠BAC + ∠CAD = 90◦ + ∠BAC,

therefore, cos (∠OCAD) = sin(∠BAC). Finally,

AOC cos (∠OCAD) =
AB

2 sin (∠ACB)
· sin(∠BAC) =

BC

2
,

where the last equality is the Law of Sines to the triangleABC. Similarly,
DOB cos (∠OBDA) = BC

2 , and the equality is proved.

3. Answe r : ⌊n3⌋ queens.

First we show that every polyomino with n tiles can be guarded by
⌊n3⌋ queens. We select one tile of the polyomino to be the root, and label
all the tiles according to their distance from the root (where the distance

between two tiles is the minimum number of steps needed to get from
one to the other, such that each step goes from one tile of the polyomino

to an adjacent tile of the polyomino). If possible, we select as the root
a tile that is adjacent to only one other tile. If every tile of the poly-

omino is adjacent to more than one other tile, then we may select any
tile as the root.

The tiles are partitioned into three sets according to whether their
distance from the root is 0, 1, or 2 mod 3. If the 2 mod 3 set is empty,
then a queen placed on the root guards the whole polyomino. Otherwise,

we place queens on all the tiles in the smallest of the three sets. We claim
that every tile is within distance 2 of at least one queen. If the queen

set is the 0 mod 3 set, then from an arbitrary tile, we can find a queen
within two steps by walking along a shortest path to the root. Similarly,

if the queen set is the 1 mod 3 set, then from every tile except the root,
we can find a queen within two steps by walking along a shortest path to
the root, and we know that the root is also adjacent to a queen. If the

queen set is the 2 mod 3 set, then from every tile of distance at least 2
from the root, we can find a queen within two steps toward the root, so

it remains to check the root and the tiles adjacent to the root. We know
that the root is distance exactly 2 from a queen. If it is adjacent to only

one tile, then that tile is adjacent to a queen. Otherwise, every tile in the
polyomino is adjacent to at least two tiles. Given a tile adjacent to the

root, it must also be adjacent to another tile, and that tile is of distance
2 from the root and thus has a queen — for parity reasons, no two tiles
adjacent to the root are adjacent to each other. Thus in all cases, every
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tile is within distance 2 of a queen, and thus, obviously, it is guarded by

a queen.
We exhibit a polyomino with n tiles that needs ⌊n3⌋ queen guards. The

construction is shown in Figure 2. If n = 3m, we make m rows of 3 tiles
each, and stack them so that the center column contains the right-most

tile of the first row, the left-most tile of the second, and the right-most
tile of the third, and continues to alternate. Then if n = 3m + 1 or
n = 3m+ 2, we add the remaining one or two tiles to the bottom of the

center column. Then no two of the m tiles furthest to the left and right
can be guarded by the same queen, so at least ⌊n3⌋ queens are needed to

guard this polyomino.

4. We consider all the numbers modulo x2 + x + 1. If the number
in the calculator is congruent to x, then the number at the next step is

congruent to x2 or x+1 ≡ −x2. The number congruent to x2 transforms
either to x4 ≡ x or to x2 + 1 ≡ −x. The numbers congruent to −x2

and −x are obtained by adding 1, so they can be only squared; this
transforms them into numbers congruent to x and x2, respectively. Thus
we always get numbers congruent to ±x or ±x2 modulo x2 + x + 1, or,

equivalently, congruent to x, x+ 1, x2, x2 + 1 modulo x2 + x+ 1.
Note that if n gives the remainder r when divided by 3, then xn+1 ≡

xr + 1 (mod x3 − 1) and therefore

xn + 1 ≡ xr + 1 (mod x2 + x+ 1).

Thus xn + 1 can leave only remainders 2, x + 1 or x2 + 1 when divided
by x2 + x + 1. On the other hand, the numbers in the calculator can

leave only remainders x, x + 1, x2 or x2 + 1. It is easy to check that
if S (which gives one of the remainders x, x + 1, x2, x2 + 1) is greater

than xn + 1 (which gives one of the remainders 2, x + 1, x2 + 1), then
the difference is at least x − 2. It follows that if S > xn + 1, then
S > xn + 1 + (x− 2) = xn + x− 1.
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Junior League

A

C

O1

B

O2

1. See problem 1, Senior league.

2. Let O1, O2 be the circumcentres of γ1, γ2. Note

that the points O1 and O2 are at equal distances from
the lines AB and AC, therefore, they lie on the bi-

sectors of angle ABC (internal and external). Hence,
O1 and O2 are intersection points of bisectors of an-

gle ABC and ω, that is, O1 and O2 are midpoints of
two arcs BC. It follows that B and C are symmetrical
with respect to the line O1O2 passing through the cen-

tres of γ1 and γ2. Thus, if point B lies on a common
tangent to these circles, so does C.

3. Answe r : ⌊n
2
⌋ rooks.

First we show that every polyomino with n tiles can be guarded by ⌊n2⌋
rooks. We 2–color the polyomino according to the parity of the sum of

coordinates of each tile; that is, tiles that share a side get opposite colors.
We take the color with the smaller number of tiles, and place rooks on

all tiles of that color, so that there are at most ⌊n2⌋ rooks. Because the
interior of the polyomino is connected, every tile shares a side with some

other tile. Thus every tile is guarded by at least one of the rooks.
Next we exhibit, for every positive integer n, a polyomino with n tiles

such that the minimum number of rooks needed to guard it is ⌊n
2
⌋.

The construction, shown in Figure 1 for n = 10 and n = 11 tiles,
consists of one center column with individual tiles attached on either

side, alternating between left and right. This construction generates a
polyomino for even n = 2m. For an odd number n = 2m+1 we construct

a polyomino by placing a tile on the bottom-most part of center column
of polyomino with n−1 tiles. To prove that ⌊n2⌋ rook guards are needed,
we observe that there are exactly ⌊n

2
⌋ tiles not in the center column, and

that no two of these can be guarded by the same rook.

4. Let q be the number of participants and the number of diplomas
on the present olympiad respectively. It is known that p

q
< 9

20
and no

fractions with denominator less than q lie between p
q
and 9

20. In all future
olympiads the number of participants n and the number of diplomas m

must satisfy p
q
< m

n
< 9

20,
9
20 −

p
q
> 2

(

9
20 −

m
n

)

.
First we prove the following general proposition.
Lemma. Let p, q, r, s < q be positive integers such that the fractions

p
q
and r

s
are irreducible and no fraction with denominator not exceeding
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q lies between these fractions. Then for every fraction m
n
between p

q
and

r
s
there are positive integers x and y such that m = px+ ry, n = qx+ sy.
Proof. The system m = px + ry, n = qx + sy admits the only

solution x = ms−nr
ps−qr

, y = pn−qm
ps−qr

. These x and y are rational and positive;
this becomes evident when the latter equations are re-written as

x =
n

q
·
m
n
− r

s
p
q
− r

s

, y =
n

s
·

p
q
− m

n
p
q
− r

s

. (∗)

It remains to prove that x and y are integral. Suppose the contrary:
at least one of the numbers α = {x}, β = {y} is not 0. Then the
numbers m′ = pα + rβ, n′ = qα + sβ, m′′ = p(1 − α) + r(1 − β),

n′′ = q(1−α)+ s(1−β) are positive integers and the fractions m′

n′
, m′′

n′′
lie

between p
q
and r

s
. On the other hand, n′ + n′′ = q + s < 2q, that is, at

least one of the numbers n′ and n′′ is less than q, a contradiction.
To solve our problem, we apply the lemma to the fractions p

q
and 9

20,

that is, take r = 9, s = 20. Then the lemma gives us m = px + 9y,
n = qx+ 20y with positive integral x and y; in particular, x > 1. In the
first equation (*) the second factor

m
n
− r

s
p
q
− r

s

does not exceed 1
2
, therefore, the

first factor n
q
is at least 2, q.e.d.
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