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Senior league

1. Do there exist three different quadratic trinomials f(x), g(x), h(x)
such that the roots of the equation f(x) = g(x) are 1 and 4, the roots

of the equation g(x) = h(x) are 2 and 5, and the roots of the equation
h(x) = f(x) are 3 and 6? (A. Golovanov)

2. 2550 rooks and k pawns are arranged on a 100× 100 board. The

rooks cannot leap over pawns. For which minimum k it is possible that
no rook can capture any other rook? (N. Vlasova)

3. A point P on the side AB of a triangle ABC and points S and
T on the sides AC and BC are such that AP = AS and BP = BT .

The circumcircle of PST meets the sides AB and BC again at Q and R,
respectively. The lines PS and QR meet at L. Prove that the line CL

bisects the segment PQ. (A. Antropov)

4. Prove that for every positive integers d > 1 and m the sequence
an = 22

n

+d contains two terms ak and aℓ (k 6= ℓ) such that their greatest

common divisor is greater than m. (T. Hakobyan )

Junior League

1. Real numbers a 6= 0, b, c are given. Prove that there is a polynomial

P (x) with real coefficients such that the polynomial x2 + 1 divides the
polynomial aP 2(x) + bP (x) + c. (A. Golovanov)

2. A circle touches the side AB of the triangle ABC at A, touches the

side BC at P and intersects the side AC at Q. The line symmetrical to
PQ with respect to AC meets the line AP at X. Prove that PC = CX.

(S. Berlov)

3. 2551 rooks and k pawns are arranged on a 100× 100 board. The
rooks cannot leap over pawns. For which minimum k it is possible that

no rook can capture any other rook? (A. Kuznetsov)

4. Prove that for every odd positive integer d > 1 and every positive

integer m the sequence an = 22
n

+d contains two terms ak and aℓ (k 6= ℓ)
such that their greatest common divisor is greater than m.

(T. Hakobyan )
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SOLUTIONS

Senior League

1. The statement on the roots of equation f(x) = g(x) means that

the difference f(x) − g(x) is of the form a(x − 1)(x − 4) (since it is a
polynomial of degree not exceeding 2 with roots 1 and 4). Applying

the same argument to the other differences we can write the equality
(f(x)− g(x)) + (g(x)− h(x)) = (f(x)− h(x)) as

a(x− 1)(x− 4) + b(x− 2)(x− 5) = c(x− 3)(x− 6).

Putting x = 1 we get 4b = 10c; putting x = 4 we get −2b = −2c. This is

possible only when b = c = 0, but then f , g, h coincide, a contradiction.

2. Answe r : for k = 2450.
To prove the estimate we start in each rook a downward segment

ending at the first pawn it meets or, if no such pawn is found, at the
lower border of the table. In every row there is at most one segment
ending at the border. At most one segment ends at each pawn. Thus the

number of pawns is at least 2450.
To construct an example, we start with putting a rook in the fiftieth

square of the upper row. In the second row we put a pawn in the fiftieth
square and two rooks to the left and to the right of it. Then all the rows

down to the 50th are filled in the following way: we put a rook under
each pawn of the preceding row and a pawn under each rook, and add

one rook to the left of the leftmost pawn and one rook to the right of the
rightmost pawn. 000R000000RPR0000RPRPR00RPRPRPR00RPRPRPR00RPRPR0000RPR000000R000

The lower half of the board is symmetrical to the up-

per one with respect to the center of the board (in the
picture 8× 8 board is shown).

In this arrangement rooks and pawn alternate in
each row and column. This is obvious for rows; in

columns we should only look at the 50th and 51th rows.
Note that the 50th row contains rooks on all the odd positions and pawns
on all the even positions except the last one. After the reflection the 51th

row will contain rooks on all the even positions and pawns on all the odd
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positions except the first one; thus the neighbouring figures of these two

rows are different, and our arrangment satisfies the condition. Obviously
it contains 2550 rooks and 2450 pawns.

A

C

R

B

L

K

P Q

S

T

U

3. Let the circumcircle of PST meets AC again

at U , and K is the common point of PT and
QU . Applying Pascal’s theorem to RTPSUQ we

see that K, L, C are collinear. Since AP = AS,
PQUS is an isosceles trapezoid and PS ‖ QU , sim-

ilarly, QR ‖ PT . It remains to note that QLPK
is a parallelogram and its diagonal KL bisects its
other diagonal PQ.

Second so lut ion.

C

R

L

R′

S′

S

L emma. Let the angles of triangle SLR sat-

isfy ∠LSR < 90◦, ∠SRL < 90◦ and the tangents
to the circumcircle of SLR at S and R meet at
C. Then LC is the symmedian of triangle SLR.

P r o o f. Note that ∠RCS = ∠SRC =
= ∠SLR. Therefore the angles ∠CSL =

= 180◦−∠SRL and ∠CRL = 180◦−∠RSL are obtuse. We take ponts S ′

and R′ on the rays LS and LR respectively so that CS ′ = CS = CR =

CR′. These points lie on the extended sides. Then ∠CSS ′ = ∠CS ′S =
= ∠SRL, hence ∠SCS ′ = 180◦ − 2∠SRL. Similarly, ∠RCR′ =
= 180◦ − 2∠RSL. Therefore

∠S ′CR′ = 180◦ − 2∠SRL+ 180◦ − 2∠SLR+ 180◦ − 2∠RSL = 180◦,

i. e. LC is the median of S ′LR. It is easy to see that triangles LSR
and LR′S ′ are similar, therefore the ray LC goes along the median of

△PQL. The lemma is proved.
The solution of the problem follows almost immediately.

Obviously

∠SLR = ∠RSC = ∠SCR =
1

2
(∠BAC + ∠ABC).

Then SC and RC are tangent to the circumcircle of SLR. It follows from
the lemma that LC is symmedian in △SRL. The line PQ is antiparallel

to SR, therefore, the ray LC goes along the median of △PQL.

4. Let vp(n) denote the maximum k such that a positive integer n is

divisible by pk, where p is a prime.
Suppose there exist m and d such that (ak, aℓ) 6 m for all k and ℓ.

It follows that if pt divides ak and aℓ for some positive integers t, k, ℓ
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(k 6= ℓ) and prime p then pt < m. In other words, for every prime p the

sequence {vp(ak)} is bounded.

L emm a 1. If positive integers n and k satisfy the inequality v2(k) <
n then k divides 2ℓ − 2n for some ℓ > n.

P r o o f. Let k = 2ab, where b is odd. We have a < n. There exists m
such that b divides 2m − 1. Then 2ab divides 2n+m − 2n = 2n(2m − 1).

L e mm a 2. If p divides an for some prime p > m and integral n then

p ≡ 1 (mod 2n).

P r o o f. Suppose 2n does not divide p − 1. It follows from Lemma 1

that p− 1 divides 2ℓ − 2n for some ℓ > n. Then

aℓ − an = 22
ℓ − 22

n

= 22
n

(22
ℓ−2n − 1).

The difference 22
ℓ−2n − 1 is divisible by p because 2ℓ − 2n is divisible by

p− 1. Therefore p 6 (an, aℓ) 6 m, a contradiction.

L e mm a 3. d is a power of 2.

P r o o f. For each n we write an = 2knbncn, where bn contains only odd
prime divisors of an that are less than m and cn contains those that are
not less than m (bn or cn can be equal to 1).

It follows from Lemma 2 that cn ≡ 1 (mod 2n), therefore an ≡ d ≡
2knbn (mod 2n). The number of primes less than m is finite and for each

of them the sequence {vp(an)} is bounded. Moreover, kn = v2(d) when
n > v2(d). This means that there exists M such that 2knbn < M for

every integer n, that is, 2knbn = d for sufficiently large n.
Thus d divides an = 22

n

+ d for sufficiently large n, so it also divides

22
n

, and d is a power of 2.

L e mm a 4. For large enough n there exists ℓ > n such that an
divides aℓ.

P r o o f. Let d = 2k. Choose n > v2(k); then v2(2
n − k) = v2(k). It

follows from Lemma 1 that there exists ℓ such that 2n−k divides 2ℓ− 2n

and therefore 2ℓ − k.

Since v2(2
ℓ − k) = v2(k) = v2(2

n− k), the number (2ℓ − k)/(2n− k) is
odd, thus 22

n−k + 1 divides 22
ℓ−k + 1. Multiplying by 2k we get that an

divides aℓ.

It follows from Lemma 4 that an = (an, aℓ) 6 m for each n > v2(k), a
contradiction.
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Junior League

1. First solution. It is obviously enough that x2 + 1 divides P 2(x) +
b
a
P (x) + c

a
; therefore we may assume a = 1. We prove that it is always

possible to find a polynomial of the form P (x) = rx + s. For such
polynomial

P 2(x)+bP (x)+c = (rx+s)2+b(rx+s)+c = r2x2+(2rs+br)x+(s2+bs+c),

and it suffices to satisfy the conditions 2rs+ br = 0 and r2 = s2+ bs+ c.

If the equation s2 + bs + c = 0 has a root s0 (that is, if b2 > 4c), these
conditions are satisfied by r = 0 and s = s0 (then P (x) = s0 is constant).
Otherwise, the first condition is satisfied by s = − b

2
. Then the second

condition becomes r2 = c − b2

4
where RHS is positive, and the desired r

exists. In this case we produce suspiciously familiar-looking polynomial

P (x) = − b
2
±

√
4c−b2

2
x.

The second solution is intended for those who alredy know what a
complex number is, or for those who still do not know but badly want

to. Clearly, if the polynomial at2 + bt+ c has a real root, then this root
(considered as a constant polynomial P (x)) satisfies the condition. If

not, at2 + bt+ c has two conjugate complex roots r + si and r − si. Let
us prove that P (x) = r + sx satisfies the condition. Indeed, it is chosen
so that it vanishes at x = i and x = −i. Therefore it is divisible by

(x+ i)(x− i) = x2 + 1.

What we really wanted to find in the first solution was, obviously,

not the polynomial P (x) but the remainder when it is divided by x2 + 1
(since the required divisibility depends on the remainder only). In fact
we operated in the arithmetic of residues modulo x2 + 1, where residue

x multiplied by itself is −1. It happened that every quadratic equation
has a root in this arithmetic. This arithmetic is the arithetic of complex

numbers, and every non-constant polynomial has a root in it.

A

C X

B

P

Q

2. Since BA and BP are tangents, we have
BA = BP , and therefore ∠BAP = ∠BPA. More-

over, ∠BPA = ∠XPC (these angles are vertical),
∠BAP = ∠PQA (the angle between chord and tan-

gent). By symmetry we have ∠PQA = ∠XQC, that
is, ∠XQC = ∠XPC, and quadrilateral PQCX is
cyclic. Thus ∠CXP = ∠PQA = ∠XPC, and trian-

gle PCX is isosceles.

3. Answe r : for k = 2452.
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To prove the estimate we put a pawn under each square of the last row

and start in each rook a downward segment ending at the first occupied
square it enters (obviously this square contains a pawn). At most one

segment ends at each pawn. Thus the number of pawns is at least 2551,
and the board contains at least 2451 “real” pawns.

Suppose we arranged 2551 rooks and (exactly) 2551 pawns. Then each
pawn is at the end of exactly one segment. We prove that in this case
for each k 6 50 the k-th row (counted from below) cannot contain more

than k rooks.
Assume that the k-th row contains at least k + 1 rooks. Consider

k× 100 rectangle adjacent to the lower side of the board. In each row of
the rectangle the number of rooks exceeds the number of pawns at most

by 1, therefore the total number of rooks in the rectangle exceeds tha
number of pawns at most by k. On the other hand, no column of this
rectangle can contain more pawns than rooks, becuse every rook is the

end of a segment. Besides, each of k + 1 columns containing the rooks
of the k-th row has more rooks than pawns. Thus the number of rooks

exceeds the number of pawns at least by k + 1, a contradiction.
Now 50×100 rectangle adjacent to the lower side of the board contains

at most 1+2+ . . .+50 = 1275 rooks. The same is true for the upper half
of the board, and the total number of rooks is at most 2550, contrary to

our supposition.
The example can be obtained by arranging 2550 rooks and 2450 pawns

as in the problem 2, senior league, and adding one rook in a corner and

two pawns in the neighbouring squares.

4. See Problem 4, senior league (the first three lemmas).
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