МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ САХА (ЯКУТИЯ)

МЕЖДУНАРОДНАЯ ОЛИМПИАДА "ТУЙМААДА—2018"

(математика)

Первый день

Сборник содержит задачи XXV Международной олимпиады школьников "Туймаада" по математике. Задания подготовлены при участии членов Методического Совета Всероссийской математической олимпиады школьников. В составлении задач сборника приняли участие: А. Альцгеймер, А. В. Антропов, С. Л. Берлов, Н. Ю. Власова, А. С. Голованов, К. П. Кохась, А. С. Кузнецов, Ф. В. Петров. Компьютерный макет: М. А. Иванов, К. П. Кохась, А. И. Храбров.

Каждая задача оценивается в 7 баллов. На выполнение заданий каждого дня отводится 5 часов.

Старшая лига

1. На плоскости нарисованы графики трех квадратных трехчленов. Могло ли так случиться, что первые два графика пересекаются в точках с абсциссами 1 и 4, второй и третий графики пересекаются в точках с абсциссами 2 и 5, а первый и третий графики пересекаются в точках с абсциссами 3 и 6?

(A. Голованов)

2. На доске 100×100 стоят 2550 ладей и k фишек. Ладьи не бьют сквозь фишки. При каком наименьшем k ладьи могут не бить друг друга?

(Н. Власова)

3. На стороне AB треугольника ABC выбрана точка P, а на сторонах AC и BC точки S и T таким образом, что AP = AS и BP = BT. Описанная окружность треугольника PST вторично пересекает стороны AB и BC в точках Q и R соответственно. Прямые PS и QR пересекаются в точке L. Докажите, что прямая CL делит отрезок PQ пополам.

(A. Ahmponoe)

4. Докажите, что для любых натуральных d>1 и m в последовательности $a_n=2^{2^n}+d$ найдутся два числа a_k и a_ℓ $(k\neq\ell)$, у которых наибольший общий делитель больше m.

(T. Hakobyan)

Младшая лига

1. Даны вещественные числа $a \neq 0$, b и c. Докажите, что существует многочлен P(x) с вещественными коэффициентами такой, что многочлен $aP^2(x) + bP(x) + c$ делится на $x^2 + 1$.

(А. Голованов)

- **2.** Окружность касается стороны AB треугольника ABC в точке A, стороны BC в точке P и пересекает сторону AC в точке Q. Прямая, симметричная PQ относительно AC, пересекает прямую AP в точке X. Докажите, что PC = CX. (C. Eерлов)
- **3.** На доске 100×100 стоят 2551 ладей и k фишек. Ладьи не бьют сквозь фишки. При каком наименьшем k ладьи могут не бить друг друга?

(*H. Власова*)

4. Докажите, что для любого нечетного натурального d>1 и натурального m в последовательности $a_n=2^{2^n}+d$ найдутся два числа a_k и a_ℓ ($k\neq \ell$), у которых наибольший общий делитель больше m.

(T. Hakobyan)

РЕШЕНИЯ ЗАДАЧ

Старшая лига

1. Утверждение о корнях уравнения f(x) = g(x) означает, что разность f(x) - g(x) имеет вид a(x-1)(x-4) (так как это многочлен степени не выше 2 с корнями 1 и 4). Применяя то же соображение к двум другим разностям трёхчленов, мы можем переписать равенство (f(x) - g(x)) + (g(x) - h(x)) = (f(x) - h(x)) в виде

$$a(x-1)(x-4) + b(x-2)(x-5) = c(x-3)(x-6).$$

Подставляя в него x=1, получаем 4b=10c, а подставляя x=4, получаем -2b=-2c. Такое возможно только при b=c=0, но тогда многочлены $f,\,g$ и h совпадают, что противоречит условию.

2. Ответ: при k = 2450.

Оценка. Опустим из каждой ладьи отрезок вниз до первого пересечения с границей доски или пешкой. В каждом столбце не более чем из одной ладьи отрезок доходит до границы доски. И в каждую пешку входит не более одного отрезка. Поэтому пешек не менее 2450.

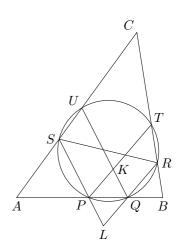
Пример. Поставим пешку в верхнюю строчку, пятидесятый столбец. Во второй сверху строчке поставим пешку в пятидесятый столбец, а справа и слева от пешки по ладье. Далее заполняем строки сверху вниз вплоть до пятидесятой по следующему алгоритму: ставим ладьи в те клетки, сверху над которыми стоит пешка, и пешки — в клетки, над которыми стоит ладья. После чего слева от самой левой в строке пешки и справа от самой правой ставим по ладье. Переходим к следующей строке.

Нижнюю половину доски заполним, отразив верхнюю половину относительно центра доски (см. рисунок для доски 8×8).

При таком построении в любой строке и в любом столбце ладьи и пешки чередуются. Для строк это очевидно, для столбцов это очевидно для всех фигур, кроме стоящих на 50-й и 51-й строчках. Заметим, что в 50-й строке на всех нечетных местах стоят ладьи, а на всех четных, кроме 100-го, — пешки.

После симметрии в 51-й строке ладьи будут стоять на всех четных местах, а пешки — на всех нечетных, кроме первого. То есть, такая расстановка походит и ладей в ней ровно 2550, а пешек — 2450.

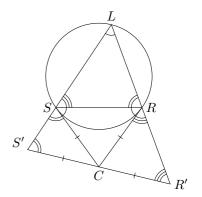
3. Пусть описанная окружность PST вторично пересекает AC в точке U, кроме того, пусть PT и QU пересекаются в точке K. Тогда по теореме Паскаля для шестивершинника RTPSUQ точки K, L и C лежат на одной прямой. Заметим теперь, что поскольку AP = AS, то PQUS — равнобочная трапеция и $PS \parallel QU$, аналогично $QR \parallel PT$. Осталось заметить, что QLPK — параллелограмм и одна его диагональ KL делит другую PQ пополам.



Второе решение.

Лемма. Пусть в треугольнике SLR углы $\angle LSR < 90^\circ$, $\angle SRL < 90^\circ$. Касательные к описанной окружности треугольника SLR в точках S и R пересекаются в точке C. Тогда LC — симедиана треугольника SLR.

Доказательство. Заметим, что $\angle RSC = \angle SRC = \angle SLR$. Поэтому углы $\angle CSL =$



= $180^{\circ} - \angle SRL$ и $\angle CRL = 180^{\circ} - \angle RSL$ тупые. Отметим на лучах LS и LR точки S' и R' соответственно так, что CS' = CS = CR = CR'. Эти точки попадут на продолжения сторон. Тогда $\angle CSS' = \angle CS'S = \angle SRL$, откуда $\angle SCS' = 180^{\circ} - 2\angle SRL$. Аналогично, $\angle RCR' = 180^{\circ} - 2\angle RSL$. Значит,

$$\angle S'CR' = 180^{\circ} - 2\angle SRL + 180^{\circ} - 2\angle SLR + 180^{\circ} - 2\angle RSL = 180^{\circ},$$

т. е. LC — медиана треугольника S'LR'. Легко видеть, что треугольники LSR и LR'S' подобны, поэтому в треугольнике LSR луч CL является симедианой. Лемма доказана.

Решение задачи. Очевидно, что

$$\angle SLR = \angle RSC = \angle SCR = \frac{1}{2}(\angle BAC + \angle ABC).$$

Тогда SC и RC — касательные к описанной окружности треугольника SLR. Из леммы следует, что LC — симедиана треугольника SRL. Прямая PQ антипараллельна SR, поэтому в треугольнике PQL луч LC является медианой.

4. Для простого числа p и натурального числа n обозначим через $v_p(n)$ степень вхождения p в n.

Предположим, что существуют такие m и d что у каждой пары чисел a_k , a_ℓ наибольший общий делитель не превосходит m. Из этого следует, что если для некоторых натуральных чисел t, k, ℓ ($k \neq \ell$) и простого p числа a_k и a_ℓ делятся на p^t , то $p^t < m$. Иными словами, для любого простого p последовательность $\{v_p(a_k)\}$ ограничена.

 Π емма 1. Если для натуральных чисел n и k выполнено неравенство $v_2(k) < n$, то найдется натуральное число $\ell > n$ такое, что $2^\ell - 2^n$ делится на k.

Доказательство. Пусть $k=2^ab$, где b нечетно. В силу предположения леммы a< n. Выберем такое натуральное m, что 2^m-1 делится на b. Тогда $2^{n+m}-2^n=2^n(2^m-1)$ делится на 2^ab .

 Π емм а 2. Если для некоторого простого p > m и натурального n число a_n делится на p, то $p \equiv 1 \pmod{2^n}$.

Доказательство. Предположим, что p-1 не делится на 2^n . По лемме 1 найдется такое $\ell>n$, что $2^\ell-2^n$ делится на p-1. Тогда

$$a_{\ell} - a_n = 2^{2^{\ell}} - 2^{2^n} = 2^{2^n} (2^{2^{\ell} - 2^n} - 1).$$

Второй сомножитель делится на p, так как двойка возводится в степень, кратную p-1. Значит, $p \leq (a_n, a_\ell) \leq m$. Противоречие.

 Λ емма 3. Число d — это степень 2.

Доказательство. Для каждого натурального n представим $a_n=2^{k_n}b_nc_n$, где b_n содержит только из нечетные простые делители a_n , меньшие m, а c_n содержит только простые делители, большие m (возможно, $b_n=1$ или $c_n=1$).

Из леммы 2 следует, что $c_n \equiv 1 \pmod{2^n}$, значит, $a_n \equiv d \equiv 2^{k_n}b_n \pmod{2^n}$. Количество простых чисел, меньших m, ограничено и для каждого из них послежовательность $\{v_p(a_n)\}$ ограничена. Кроме того, $k_n = v_2(d)$ при $n > v_2(d)$. То есть найдется натуральное m такое, что $2^{k_n}b_n < M$ для любого натурального n. Откуда следует, что $2^{k_n}b_n = d$ для достаточно больших n.

Итого, $a_n = 2^{2^n} + d$ делится на d для достаточно больших n. Следовательно, 2^{2^n} делится на d, то есть d — степень 2.

 Π емма 4. Для достаточно большого n существует $\ell > n$ такое, что a_ℓ делится на a_n .

Доказательство. Пусть $d=2^k,\ n>v_2(k),$ тогда $v_2(2^n-k)=v_2(k)$. По лемме 1 найдется ℓ такое, что $2^\ell-2^n$ делится на $2^n-k,$ а следовательно, $2^\ell-k$ делится на $2^n-k.$

Так как $v_2(2^{\ell}-k)=v_2(k)=v_2(2^n-k)$, число $(2^{\ell}-k)/(2^n-k)$ нечетно, из чего следует, что $2^{2^{\ell}-k}+1$ делится на $2^{2^n-k}+1$. Умножив на 2^k , получим, что a_ℓ делится на a_n .

Из леммы 4 следует, что $a_n = (a_n, a_\ell) \leqslant m$ для любого $n > v_2(k)$, что неверно.

Младшая лига

1. Первое решение. Поскольку, очевидно, достаточно, чтобы на x^2+1 делился многочлен $P^2(x)+\frac{b}{a}P(x)+\frac{c}{a}$, можно считать, что a=1. Мы докажем, что всегда можно найти многочлен вида P(x)=rx+s. Для такого многочлена

$$P^{2}(x)+bP(x)+c=(rx+s)^{2}+b(rx+s)+c=r^{2}x^{2}+(2rs+br)x+(s^{2}+bs+c),$$

и нам достаточно, чтобы выполнялись условия

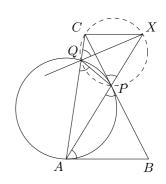
$$2rs + br = 0$$
 и $r^2 = s^2 + bs + c$.

Если уравнение $s^2+bs+c=0$ имеет корень s_0 (т. е. при $b^2\geqslant 4c$), этим условиям удовлетворяет r=0 и $s=s_0$ (и тогда $P(x)=s_0$ — константа). В противном случае для выполнения первого условия можно положить $s=-\frac{b}{2}$. При этом второе условие примет вид $r^2=c-\frac{b^2}{4}$ с положительной правой частью, и требуемое r найдётся. В этом случае искомый многочлен отыщется в подозрительно знакомом виде $P(x)=-\frac{b}{2}\pm\frac{\sqrt{4c-b^2}}{2}x$.

Второе решение предназначено для тех, кто уже знает, что такое комплексное число, или ещё не знает, но очень хочет узнать. Очевидно, если многочлен at^2+bt+c имеет вещественный корень, то этот корень можно взять в качестве (постоянного) многочлена P(x). Если же нет, то у многочлена at^2+bt+c два комплексно сопряжённых корня r+si и r-si. Докажем, что многочлен P(x)=r+sx удовлетворяет условию задачи. Действительно, в силу выбора P(x) многочлен $aP^2(x)+bP(x)+c$ обращается в 0 при x=i и при x=-i. Поэтому он делится на $(x+i)(x-i)=x^2+1$.

В первом решении мы искали, разумеется, не многочлен P(x), а его остаток от деления на x^2+1 (от которого только и зависит требуемая делимость). Фактически мы рассматривали арифметику остатков многочленов с вещественными коэффициентами при делении на x^2+1 , в которой остаток x при умножении на себя даёт -1. Оказалось, что в этой арифметике любое квадратное уравнение имеет корень. Эта арифметика и есть арифметика комплексных чисел, и корень в ней имеется у любого непостоянного многочлена.

2. Так как BA и BP — отрезки касательных, BA = BP, а значит, $\angle BAP = \angle BPA$. Кроме того, $\angle BPA = \angle XPC$ как вертикальные, $\angle BAP = \angle PQA$ как угол между касательной и хордой. Из симметрии $\angle PQA = \angle XQC$. Т. е. $\angle XQC = \angle XPC$, и четырехугольник PQCX вписанный. Следовательно, $\angle CXP = \angle PQA = \angle XPC$, и треугольник PCX равнобедренный.



3. Ответ: при k = 2452.

Оценка. Поставим под каждой клеткой нижней строки пешку. Опустим из каждой ладьи отрезок вниз до первого пересечения с занятой клеткой (очевидно, эта клетка занята пешкой). В каждую пешку входит не более одного отрезка. Поэтому пешек не менее 2551, т.е. на самой доске их не менее 2451.

Предположим, что удалось поставить 2551 ладью и ровно 2551 пешку. Тогда в каждую пешку должен приходить ровно один отрезок. Докажем что тогда при k от 1 до 50 в k-й снизу строке стоит не более k ладей.

Действительно, предположим, что при некотором k в k-й строке стоит хотя бы k+1 ладья. Рассмотрим прямоугольник $k \times 100$, прилегающий к нижней стороне доски. В каждой его строчке количество ладей не более чем на 1 превышает количество пешек, поэтому во всем прямоугольнике ладей не более чем на k больше, чем пешек. С другой стороны, в каждом столбце этого прямоугольника ладей не меньше, чем пешек, иначе в какую-то пешку не придет отрезок. Кроме того, в k+1 столбцах, содержащих ладьи k-ой строки, ладей строго больше, чем пешек. Поэтому ладей хотя бы на k+1 больше, чем пешек. Противоречие.

Значит, в прямоугольнике 50×100 , прилегающем к нижней стороне доски, стоит не более $1+2+\ldots+50=1275$ ладей. Аналогично, в верхнем прямоугольнике не более 1275 ладей. Тогда всего ладей не более 2550. Противоречие.

Пример: Расставим сначала 2550 ладей и 2450 пешек — см. решение задачи 2 старшей лиги. После этого поставим ладью в угловую клетку и две пешки в соседние с ней по стороне клетки.

4. См. решение задачи 4 старшей лиги (первые три леммы).